Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 271))

Abstract

Cellulose, a fascinating biopolymer and the most common organic compound on earth, is comprehensively reviewed. Details of its crystalline phases are given, starting with a description of molecular and supramolecular structures, including the hydrogen bond systems. Sources of this ubiquitous biopolymer are mentioned, with attention to the special properties of bacterially synthesized nanofibrous cellulose. Nanostructures obtained by disintegration of cellulose fibers (top-down approach) yielding nano- or microfibrillated cellulose and cellulose whiskers are the basis for novel materials with extraordinary properties. Moreover, nanofibers and nanoparticles can be made by special techniques applying the bottom-up approach. Efficient systems to dissolve cellulose by destruction of the hydrogen bond systems using ionic liquids and systems based on polar aprotic solvent and salt are described. Novel cellulose derivatives are available by chemical modification under heterogeneous or homogeneous conditions, depending on the cellulose reactivity. In particular, unconventional nucleophilic displacement reactions yielding products for high-value applications are highlighted. Novel amino cellulose derivatives showing fully reversible aggregation behavior and nanostructure formation on various materials are the focus of interest. Finally, “click chemistry” for the synthesis of novel cellulose derivatives is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  2. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites. An overview. Macromol Mater Eng 276(277):1–24

    Article  Google Scholar 

  3. Heinze T, Liebert T (2012) Celluloses and polyoses/hemicelluloses. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 10. Elsevier, Amsterdam, pp 83–152

    Chapter  Google Scholar 

  4. Payen A (1839) Composition de la matière ligneuse. Comptes Rendus 8:51–53

    Google Scholar 

  5. Young RA (1994) Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130

    Article  CAS  Google Scholar 

  6. Sixta H (ed) (2006) Handbook of pulp. Wiley-VCH, Weinheim

    Google Scholar 

  7. Schubert S, Schlufter K, Heinze T (2011) Configurations, structures, and morphologies of cellulose. In: Popa V (ed) Polysaccharides in medicinal and pharmaceutical applications. iSmithers, Shrewsbury, pp 1–55

    Google Scholar 

  8. Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medical applications. Marcel Dekker, New York, pp 87–105

    Google Scholar 

  9. Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  10. Vandamme EJ, De Baets S, Vanbaelen A et al (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99

    Article  CAS  Google Scholar 

  11. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  12. Rao VSR, Sundararajan PR, Ramakrishnan C et al (1967) Conformational studies of amylose. In: Ramachandran GN (ed) Conformation of biopolymers, vol 2. Academic, London, pp 721–737

    Chapter  Google Scholar 

  13. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science, Yverdon

    Google Scholar 

  14. Perez S, Mazeau K (2005) Conformations, structures, and morphologies of celluloses. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 41–68

    Google Scholar 

  15. Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci A Polym Chem 35:717–723

    Article  CAS  Google Scholar 

  16. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  17. Michell AJ (1988) Second derivative FTIR spectra of celluloses I and II and related mono- and oligosaccharides. Carbohydr Res 173:185–195

    Article  CAS  Google Scholar 

  18. Kamide K, Okajima K, Kowsaka K et al (1985) CP/MASS (cross-polarization/magic angle sample spinning] carbon-13 NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept. Polym J 17:701–706

    Article  CAS  Google Scholar 

  19. Gardner KH, Blackwell J (1974) Structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  20. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  21. Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 69–98

    Google Scholar 

  22. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  23. Sarko A, Muggli R (1947) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7:486–494

    Article  Google Scholar 

  24. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  25. Isogai A, Usuda M, Kato T et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  26. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

  27. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  28. Wada M, Heux L, Isogai A et al (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243

    Article  CAS  Google Scholar 

  29. Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  30. Isogai A (1994) Allomorphs of cellulose and other polysaccharides. In: Gilbert RD (ed) Cellulosic polymers: blends and composites. Hanser, Munich, p 1

    Google Scholar 

  31. Hermans PH, Weidinger A (1946) Recrystallization of amorphous cellulose. J Am Chem Soc 68:1138

    Article  CAS  Google Scholar 

  32. Wadehra IL, Manley RSJ (1965) Recrystallization of amorphous cellulose. J Appl Polym Sci 9:2627–2630

    Article  CAS  Google Scholar 

  33. Schroeder LR, Gentile VM, Atalla RH (1986) Nondegradative preparation of amorphous cellulose. J Wood Chem Technol 6:1–14

    Article  CAS  Google Scholar 

  34. Atalla RH, Ellis JD, Schroeder LR (1984) Some effects of elevated temperatures on the structure of cellulose and its transformation. J Wood Chem Technol 4:465–482

    Article  CAS  Google Scholar 

  35. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  36. Ioelovich M, Leykin A (2008) Cellulose as a nanostructured polymer: a short review. Bioresources 3:1403–1418

    Google Scholar 

  37. Welch LM, Roseveare WE, Mark H (1946) Fibrillar structure of rayon fibers. Ind Eng Chem 38:580–582

    Article  CAS  Google Scholar 

  38. Sisson WA (1940) X-ray studies of crystallite orientation in cellulose fibers. III. Fiber structures from coagulated cellulose. J Phys Chem 44:513–529

    Article  CAS  Google Scholar 

  39. Klemm D, Schumann D, Udhardt U et al (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  40. Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in the production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224

    Article  CAS  Google Scholar 

  41. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256

    Article  CAS  Google Scholar 

  42. Ring DF, Nashed W, Dow T (1987) Microbial polysaccharide articles and methods of production. US Patent 4,655,758, 7 Apr 1987

    Google Scholar 

  43. Ring DF, Nashed W, Dow T (1986) Liquid loaded pad for medical applications. US Patent 4,588,400, 13 May 1986

    Google Scholar 

  44. Farah LF (1990) Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. US Patent 4,912,049, 27 Mar 1990

    Google Scholar 

  45. Czaja W, Krystynowicz A, Bielecki S et al (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  46. Watanabe K, Tabuchi M, Morinaga Y et al (1998) Structural features and properties of bacterial cellulose produced in agitated-culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  47. Klemm D, Schumann D, Kramer F et al (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  48. Pääkköö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  Google Scholar 

  49. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  50. Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  51. Steege H-H, Philipp B (1974) Production, characterization, and use of microcrystalline cellulose. Zellst Pap 23:68–73

    CAS  Google Scholar 

  52. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  53. Araki J, Wada M, Kuga S et al (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surf A Physicochem Eng Asp 142:75–82

    Article  CAS  Google Scholar 

  54. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  55. Araki J, Wada M, Kuga S et al (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  56. de Vries HI (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226

    Article  Google Scholar 

  57. Revol J-F, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  58. Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292

    Article  CAS  Google Scholar 

  59. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  60. Odijk T, Lekkerkerker HNW (1985) Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules. J Phys Chem 89:2090–2096

    Article  CAS  Google Scholar 

  61. de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18:992–996

    Article  CAS  Google Scholar 

  62. Angellier H, Putaux J-L, Molina-Boisseau S et al (2005) Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp 221:95–104

    Article  CAS  Google Scholar 

  63. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  64. Revol JF, Godbout L, Dong XM et al (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134

    Article  CAS  Google Scholar 

  65. Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Paper Sci 24:146–149

    CAS  Google Scholar 

  66. Orts WJ, Godbout L, Marchessault RH et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  67. Favier V, Canova GR, Cavaillé JY et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  68. Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  69. Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113

    Article  CAS  Google Scholar 

  70. Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    Article  CAS  Google Scholar 

  71. Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401

    Article  CAS  Google Scholar 

  72. Angles NM, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analyses. Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  73. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  74. Chazeau L, Cavaillé JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci B Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  75. Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134

    Article  CAS  Google Scholar 

  76. Correa AC, Morais Teixeira E, Carmona VB et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322

    Article  CAS  Google Scholar 

  77. Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617

    Article  CAS  Google Scholar 

  78. Turbak AF, Snyder FW, Sandberg KR (1982) Suspensions containing microfibrillated cellulose. EP 19810108847, 12 May 1982

    Google Scholar 

  79. Wagberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  CAS  Google Scholar 

  80. Li Y, Li G, Zou Y et al (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309

    Article  CAS  Google Scholar 

  81. Werner O, Persson L, Nolte M et al (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160

    Article  Google Scholar 

  82. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  83. Stenstad P, Andresen M, Tanem BS et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  84. Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene composites. Polym Eng Sci 33:343–346

    Article  CAS  Google Scholar 

  85. Cavaille JY, Chanzy H, Fleury E et al (1997) Surface-modified cellulose microfibrils, method for making the same, and use thereof as a filler in composite material. US Patent 6,117,545, 12 Sept 2000

    Google Scholar 

  86. Cash MJ, Chan AN, Conner HT et al (1999) Derivatized microfibrillar polysaccharide. US Patent 6,602,994, 5 Aug 2003

    Google Scholar 

  87. Gousse C, Chanzy H, Excoffier G et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  CAS  Google Scholar 

  88. Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325

    Article  CAS  Google Scholar 

  89. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  90. Reneker DH, Chun I (1996) Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  91. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  92. Xie J, Li X, Xia Y (2008) Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 29:1775–1792

    Article  CAS  Google Scholar 

  93. Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Kumar A (ed) Nanofibers. InTech, Rijeka, pp 419–438

    Google Scholar 

  94. Scholten E, Bromberg L, Rutledge GC, Hatton TA (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces 10:3902–3909

    Article  CAS  Google Scholar 

  95. Kim C-W, Kim D-S, Kang S-Y et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    Article  CAS  Google Scholar 

  96. Viswanathan G, Murugesan S, Pushparaj V et al (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418

    Article  CAS  Google Scholar 

  97. Qi H, Sui X, Yuan J et al (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700

    Article  CAS  Google Scholar 

  98. Römhild K, Wiegand C, Hipler UC et al (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771

    Article  CAS  Google Scholar 

  99. Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9:1487–1492

    Article  CAS  Google Scholar 

  100. Wondraczek H, Petzold-Welcke K, Fardim P et al (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760

    Article  CAS  Google Scholar 

  101. Nikolajski M, Wotschadlo J, Clement JH et al (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, andinteractions with living cells. Macromol Biosci 12:920–925

    Article  CAS  Google Scholar 

  102. Kostag M, Köhler S, Liebert T et al (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294(2):96–106

    Article  CAS  Google Scholar 

  103. Liebert T, Kostag M, Wotschadlo J et al (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392

    Article  CAS  Google Scholar 

  104. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  105. Heinze T, Dicke R, Koschella A et al (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  106. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. In: Heinze T (ed) Polysaccharides I, structure, characterization and use, vol 186, Advances in polymer science. Springer, Berlin, pp 103–149

    Chapter  Google Scholar 

  107. Morgenstern B, Berger W (1993) Investigations about dissolution of cellulose in the lithium chloride/N, N-dimethylformamide system. Acta Polym 44:100–102

    Article  CAS  Google Scholar 

  108. Silva AA, Laver ML (1997) Molecular weight characterization of wood pulp cellulose: dissolution and size exclusion chromatographic analysis. Tappi J 80:173–180

    CAS  Google Scholar 

  109. Striegel A (1998) Theory and applications of DMAc/LiCl in the analysis of polysaccharides. Carbohydr Polym 34:267–274

    Article  Google Scholar 

  110. Kostag M, Liebert T, El Seoud OA et al (2013) Efficient cellulose solvent: quaternary ammonium chlorides. Macromol Rapid Commun 34:1580–1584

    Article  CAS  Google Scholar 

  111. Gericke M, Liebert T, El Seoud OA et al (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493

    Article  CAS  Google Scholar 

  112. Berger W, Keck M, Philipp B (1988) On the mechanism of cellulose dissolution in nonaqueous solvents, especially in O-basic systems. Cellul Chem Technol 22:387–397

    CAS  Google Scholar 

  113. Ciacco GT, Liebert TF, Frollini E et al (2003) Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose 10:125–132

    Article  CAS  Google Scholar 

  114. Sharma RK, Fry JL (1983) Instability of anhydrous tetra-n-alkylammonium fluorides. J Org Chem 48:2112–2114

    Article  CAS  Google Scholar 

  115. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051

    Article  CAS  Google Scholar 

  116. Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  CAS  Google Scholar 

  117. Casarano R, Pires PAR, El Seoud OA (2014) Acylation of cellulose in a novel solvent system: solution of dibenzyldimethylammonium fluoride in DMSO. Carbohydr Polym 101:444–450

    Article  CAS  Google Scholar 

  118. Burchard W (1993) Macromolecular association phenomena. A neglected field of research? Trends Polym Sci 1:192–198

    CAS  Google Scholar 

  119. Schulz L, Burchard W, Dönges R (1998) Evidence of supramolecular structures of cellulose derivatives in solution. In: Heinze T, Glasser WG (eds) Cellulose derivatives: modification, characterization, and nanostructures, vol 688, ACS symposium series. American Chemical Society, Washington DC, pp 218–238

    Chapter  Google Scholar 

  120. Morgenstern B, Kammer H-W (1999) On the particulate structure of cellulose solutions. Polymer 40:1299–1304

    Article  CAS  Google Scholar 

  121. Menger FM (1993) Enzyme reactivity from an organic perspective. Acc Chem Res 26:206–212

    Article  CAS  Google Scholar 

  122. Husemann E, Siefert E (1969) N-Ethylpyridinium chloride as solvent and reaction medium for cellulose. Makromol Chem 128:288–291

    Article  CAS  Google Scholar 

  123. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 24:4974–4975

    Article  CAS  Google Scholar 

  124. Swatloski RP, Rogers RD, Holbrey JD (2003) Dissolution and processing of cellulose using ionic liquids, cellulose solution, and regenerating cellulose. World Patent 2003029329 A2, 10 April 2003

    Google Scholar 

  125. Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  126. El Seoud OA, Koschella A, Fidale LC et al (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    Article  CAS  Google Scholar 

  127. Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  128. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    Article  CAS  Google Scholar 

  129. Liebert T (2008) Innovative concepts for the shaping and modification of cellulose. Macromol Symp 262:28–38

    Article  CAS  Google Scholar 

  130. Ebner G, Schiehser S, Potthast A et al (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324

    Article  CAS  Google Scholar 

  131. Handy ST, Okello M (2005) The 2-position of imidazolium ionic liquids: substitution and exchange. J Org Chem 70:1915–1918

    Article  CAS  Google Scholar 

  132. Erdmenger T, Haensch C, Hoogenboom R et al (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445

    Article  CAS  Google Scholar 

  133. Sobue H, Kiessig H, Hess K (1939) The system: cellulose-sodium hydroxide-water in relation to the temperature. Z Phys Chem B43:309–328

    CAS  Google Scholar 

  134. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  135. Yamashiki T, Kamide K, Okajima K (1990) New cellulose fiber from aqueous alkali cellulose solution. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Ellis Horwood, London, pp 197–202

    Google Scholar 

  136. Yamashiki T, Matsui T, Saitoh M et al (1990) Characterization of cellulose treated by the steam explosion method. Part 1. Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure. Br Polym J 22:73–83

    Article  CAS  Google Scholar 

  137. Yamashiki T, Matsui T, Saitoh M et al (1990) Characterization of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerization, solubility in aqueous sodium hydroxide, and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    Article  CAS  Google Scholar 

  138. Yamashiki T, Matsui T, Saitoh M et al (1990) Characterization of cellulose treated by the steam explosion method. Part 3: effect of crystal forms (cellulose I, II and III) of original cellulose on changes in morphology, degree of polymerization, solubility and supermolecular structure by steam explosion. Br Polym J 22:201–212

    Article  CAS  Google Scholar 

  139. Yamashiki T, Matsui T, Kowsaka K et al (1992) New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method. J Appl Polym Sci 44:691–698

    Article  CAS  Google Scholar 

  140. Zhou J, Zhang L (2000) Solubility of cellulose in sodium hydroxide/urea aqueous solution. Polym J 32:866–870

    Article  CAS  Google Scholar 

  141. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  142. Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci B Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  143. Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  144. Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  145. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  146. Qi H, Chang CY, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  147. Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198

    Article  CAS  Google Scholar 

  148. Cai J, Zhang L, Chang C et al (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  149. Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036

    Article  CAS  Google Scholar 

  150. Balser K, Hoppe L, Eicher T et al (1986) Cellulose esters. In: Gerhartz W, Yamamoto YS, Campbell FT et al (eds) Ullmanns’s encyclopedia of industrial chemistry, vol A5, 5th edn. Wiley-VCH, Weinheim, p 419

    Google Scholar 

  151. Brandt L (1986) Cellulose ethers. In: Gerhartz W, Yamamoto YS, Campbell FT et al (eds) Ullmann’s encyclopedia of industrial chemistry, vol A5, 5th edn. Wiley-VCH, Weinheim, p 461

    Google Scholar 

  152. Wu J, Zhang J, Zhang H et al (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  153. Klohr EA, Koch W, Klemm D et al (2000) Manufacture of regioselectively substituted esters of oligo- and polysaccharides. DE Patent 19951734, 07 Sept 2000

    Google Scholar 

  154. Ibrahim AA, Nada AMA, Hagemann U et al (1996) Preparation of dissolving pulp from sugarcane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225

    Article  CAS  Google Scholar 

  155. Heinze T, Liebert TF, Pfeiffer KS et al (2003) Unconventional cellulose esters: synthesis, characterization, and structure property relations. Cellulose 10:283–296

    Article  CAS  Google Scholar 

  156. Takaragi A, Minoda M, Miyamoto T et al (1999) Reaction characteristics of cellulose in the lithium chloride/1,3-dimethyl-2-imidazolidinone solvent system. Cellulose 6:93–102

    Article  CAS  Google Scholar 

  157. Heinze T, Glasser WG (1998) The role of novel solvents and solution complexes for the preparation of highly engineered cellulose derivatives. ACS Symp Ser 688:2–18

    Article  CAS  Google Scholar 

  158. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin

    Google Scholar 

  159. Staab HA (1962) New methods of preparative organic chemistry IV. Syntheses using heterocyclic amides (azolides). Angew Chem Int Ed 1:351–367

    Article  Google Scholar 

  160. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides – 8. Synthesis of cellulose sulfates suitable for symplex formation. Macromol Biosci 9:343–353

    Article  CAS  Google Scholar 

  161. Wang Z-M, Li L, Xiao K-J et al (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresour Technol 100:1687–1690

    Article  CAS  Google Scholar 

  162. Gericke M, Liebert T, Heinze T (2009) Polyelectrolyte synthesis and in situ complex formation in ionic liquids. J Am Chem Soc 131:13220–13221

    Article  CAS  Google Scholar 

  163. Petzold-Welcke K, Michaelis N, Heinze T (2009) Unconventional cellulose products through nucleophilic displacement reactions. Macromol Symp 280:72–85

    Article  CAS  Google Scholar 

  164. Heinze T, Petzold-Welcke K (2012) Recent advances in cellulose chemistry. In: Habibi Y, Lucia LA (eds) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley, Hoboken, pp 1–50

    Chapter  Google Scholar 

  165. Klemm D (1998) Regiocontrol in cellulose chemistry: principles and examples of etherification and esterification. In: Heinze TJ, Glasser EG (eds) Cellulose derivatives: modification, characterisation, and nanostructures, vol 688. American Chemical Society, Washington DC, pp 19–37

    Chapter  Google Scholar 

  166. Wenz G, Liepold P, Bordeanu N (2005) Synthesis and SAM formation of water soluble functional carboxymethylcelluloses: thiosulfates and thioethers. Cellulose 12:85–96

    Article  CAS  Google Scholar 

  167. Arai K, Aoki F (1994) Preparation and identification of sodium deoxycellulosesulfonate. Sen’i Gakkaishi 50:510–514

    Article  CAS  Google Scholar 

  168. Arai K, Yoda N (1998) Preparation of water-soluble sodium deoxycellulose sulfonate from homogeneously prepared tosyl cellulose. Cellulose 5:51–58

    Article  CAS  Google Scholar 

  169. Liu C, Baumann H (2002) Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups. Carbohydr Res 337:1297–1307

    Article  CAS  Google Scholar 

  170. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364

    Article  CAS  Google Scholar 

  171. Koschella A, Heinze T (2001) Novel regioselectively 6-functionalized cationic cellulose polyelectrolytes prepared via cellulose sulfonates. Macromol Biosci 1:178–184

    Article  CAS  Google Scholar 

  172. Heinze T, Koschella A, Magdaleno-Maiza L et al (2001) Nucleophilic displacement reactions on tosyl cellulose by chiral amines. Polym Bull 46:7–13

    Article  CAS  Google Scholar 

  173. Knaus S, Mais U, Binder WH (2003) Synthesis, characterization and properties of methylaminocellulose. Cellulose 10:139–150

    Article  CAS  Google Scholar 

  174. Tiller J, Berlin P, Klemm D (1999) Soluble and film-forming cellulose derivatives with redox-chromogenic and enzyme immobilizing 1,4-phenylenediamine groups. Macromol Chem Phys 200:1–9

    Article  CAS  Google Scholar 

  175. Tiller J, Berlin P, Klemm D (2000) Novel matrices for biosensor application by structural design of redox-chromogenic aminocellulose esters. J Appl Polym Sci 75:904–915

    Article  CAS  Google Scholar 

  176. Berlin P, Klemm D, Tiller J et al (2000) A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol Chem Phys 201:2070–2082

    Article  CAS  Google Scholar 

  177. Berlin P, Klemm D, Jung A et al (2003) Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose 10:343–367

    Article  CAS  Google Scholar 

  178. Becher J, Liebegott H, Berlin P et al (2004) Novel xylylene diaminocellulose derivatives for enzyme immobilization. Cellulose 11:119–126

    Article  CAS  Google Scholar 

  179. Jung A, Berlin P (2005) New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12:67–84

    Article  CAS  Google Scholar 

  180. Dam J, Schuck P (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory. Biophys J 89:651–666

    Article  CAS  Google Scholar 

  181. Heinze T, Nikolajski M, Daus S et al (2011) Protein-like oligomerisation of carbohydrates. Angew Chem Int Ed 50:8602–8604

    Article  CAS  Google Scholar 

  182. Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183:611–631

    Article  CAS  Google Scholar 

  183. Teif VB, Bohinc K (2011) Condensed DNA: condensing the concepts. Prog Biophys Mol Biol 105:208–222

    Article  CAS  Google Scholar 

  184. Nikolajski M, Heinze T, Adams GG et al (2014) Protein–like fully reversible tetramerisation and super-association of an aminocellulose. Sci Rep 4:3861

    Article  CAS  Google Scholar 

  185. Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213

    Article  CAS  Google Scholar 

  186. Koschella A, Richter M, Heinze T (2010) Novel cellulose-based polyelectrolytes synthesized via the click reaction. Carbohydr Res 345:1028–1033

    Article  CAS  Google Scholar 

  187. Pohl M, Schaller J, Meister F et al (2008) Selectively dendronized cellulose: synthesis and characterization. Macromol Rapid Commun 29:142–148

    Article  CAS  Google Scholar 

  188. Heinze T, Schöbitz M, Pohl M et al (2008) Interactions of ionic liquids with polysaccharides: IV. Dendronization of 6-azido-6-deoxy cellulose. J Polym Sci A Polym Chem 46:3853–3859

    Article  CAS  Google Scholar 

  189. Schöbitz M, Meister F, Heinze T (2009) Unconventional reactivity of cellulose dissolved in ionic liquids. Macromol Symp 280:102–111

    Article  CAS  Google Scholar 

  190. Pohl M, Morris GA, Harding SE et al (2009) Studies on the molecular flexibility of novel dendronized carboxymethyl cellulose derivatives. Eur Polym J 45:1098–1110

    Article  CAS  Google Scholar 

  191. Pohl M, Heinze T (2008) Novel biopolymer structures synthesized by dendronization of 6-deoxy-6-aminopropargyl cellulose. Macromol Rapid Commun 29:1739–1745

    Article  CAS  Google Scholar 

  192. Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69:347–352

    Article  CAS  Google Scholar 

  193. Elschner T, Ganske K, Heinze T (2013) Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20:339–353

    Article  CAS  Google Scholar 

  194. Pourjavadi A (2011) Synthesis of soluble N-functionalized polysaccharide derivatives using phenyl carbonate precursor and their application as catalysts (Erratum to document cited in CA156:339191]. Starch 63:820

    Article  CAS  Google Scholar 

  195. Hayashi S (2002) Synthesis and properties of cellulose carbonate derivatives. Kobunshi Ronbunshu 59:1–7

    Article  CAS  Google Scholar 

  196. Sanchez Chaves M, Arranz F (1985) Water-insoluble dextrans by grafting, 2. Reaction of dextrans with n-alkyl chloroformates. Chemical and enzymic hydrolysis. Makromol Chem 186:17–29

    Article  CAS  Google Scholar 

  197. Elschner T, Kötteritzsch M, Heinze T (2014) Synthesis of cellulose tricarbonates in 1-butyl-3-methylimidazolium chloride/pyridine. Macromol Biosci 14:161–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Andreas Koschella is thankfully acknowledged for his efforts in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heinze, T. (2015). Cellulose: Structure and Properties. In: Rojas, O. (eds) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, vol 271. Springer, Cham. https://doi.org/10.1007/12_2015_319

Download citation

Publish with us

Policies and ethics