Skip to main content
Log in

Dispersion and Reinforcing Potential of Carboxymethylated Nanofibrillated Cellulose Powders Modified with 1-Hexanol in Extruded Poly(Lactic Acid) (PLA) Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bionanocomposites of poly(lactic acid) (PLA) and chemically modified, nanofibrillated cellulose (NFC) powders were prepared by extrusion, followed by injection molding. The chemically modified NFC powders were prepared by carboxymethylation and mechanical disintegration of refined, bleached beech pulp (c-NFC), and subsequent esterification with 1-hexanol (c-NFC-hex). A solvent mix was then prepared by precipitating a suspension of c-NFC-hex and acetone-dissolved PLA in ice-cold isopropanol (c-NFC-hexsm), extruded with PLA into pellets at different polymer/fiber ratios, and finally injection molded. Dynamic mechanical analysis and tensile tests were performed to study the reinforcing potential of dried and chemically modified NFC powders for PLA composite applications. The results showed a faint increase in modulus of elasticity of 10 % for composites with a loading of 7.5 % w/w of fibrils, irrespective of the type of chemically modified NFC powder. The increase in stiffness was accompanied by a slight decrease in tensile strength for all samples, as compared with neat PLA. The viscoelastic properties of the composites were essentially identical to neat PLA. The absence of a clear reinforcement of the polymer matrix was attributed to poor interactions with PLA and insufficient dispersion of the chemically modified NFC powders in the composite, as observed from scanning electron microscope images. Further explanation was found in the decrease of the thermal stability and crystallinity of the cellulose upon carboxymethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Siro I, Plackett D (2010) Cellulose 17:459–494

    Article  CAS  Google Scholar 

  4. Samir M, Alloin F, Dufresne A (2005) Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  5. Chazeau L et al (1999) J Appl Polym Sci 71:1797–1808

    Article  CAS  Google Scholar 

  6. Favier V, Chanzy H, Cavaille JY (1995) Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  7. Marchessault RH, Morehead FF, Walter NM (1959) Nature 184:632–633

    Article  CAS  Google Scholar 

  8. Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci Symp 37:815–827

    CAS  Google Scholar 

  9. Oksman K et al (2006) Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  10. Mathew AP et al (2006) In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, pp 114–131

  11. Petersson L, Kvien I, Oksman K (2007) Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  12. Bondeson D, Oksman K (2007) Compos A Appl Sci Manuf 38:2486–2492

    Article  Google Scholar 

  13. Bondeson D, Oksman K (2007) Compos Interfaces 14:617–630

    Article  CAS  Google Scholar 

  14. Iwatake A, Nogi M, Yano H (2008) Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  15. Suryanegara L, Nakagaito AN, Yano H (2009) Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  16. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454–464

    Article  CAS  Google Scholar 

  17. Jonoobi M et al (2010) Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  18. Eyholzer C et al (2010) Cellulose 17:19–30

    Article  CAS  Google Scholar 

  19. Lee K-Y, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724–2733

    Article  CAS  Google Scholar 

  20. Fukuzumi H et al (2009) Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  21. Leza ML et al (1989) Die Angewandte Makromolekulare Chemie 168:195–203

    Article  Google Scholar 

  22. Rosenau T et al (2003) Polymer 44:6153–6158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Aji Mathew and Maiju Hietala for their help during extrusion and injection molding, and Christian Walder (EMPA) for his support concerning the melt shear tests. The State Secretariat for Education and Research (SER) is gratefully acknowledged for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyholzer, C., Tingaut, P., Zimmermann, T. et al. Dispersion and Reinforcing Potential of Carboxymethylated Nanofibrillated Cellulose Powders Modified with 1-Hexanol in Extruded Poly(Lactic Acid) (PLA) Composites. J Polym Environ 20, 1052–1062 (2012). https://doi.org/10.1007/s10924-012-0508-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0508-4

Keywords

Navigation