Skip to main content
Log in

Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibers with a diameter of 70 nm and lengths of approximately 400 nm were fabricated from partly mercerized cotton fibers by acid hydrolysis. Morphological evolution of the hydrolyzed cotton fibers was investigated by powder X-ray diffraction, Fourier transform infrared analysis and field emission scanning electron microscopy. The XRD results show that the cellulose I was partially transformed into cellulose II by treatment with 15 % NaOH at 150° for 3 h. The crystallinity of this partially mercerized sample was lower than the samples that were converted completely to cellulose II by higher concentrations of NaOH. The intensities of all of the diffraction peaks were noticeably increased with increased hydrolysis time. Fourier transform infrared results revealed that the chemical composition of the remaining nanofibers of cellulose I and II had no observable change after acidic hydrolysis, and there was no difference between the hydrolysis rates for cellulose I or II. The formation of cellulose nanofibers involves three stages: net-like microfibril formation, then short microfibrils and finally nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, de Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. Lwt-Food Sci Technol 46(1):294–297. doi:10.1016/j.lwt.2011.09.016

    Article  CAS  Google Scholar 

  • Ben Mabrouk A, Vilar MR, Magnin A, Belgacem MN, Boufi S (2011) Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization. J Colloid Interf Sci 363(1):129–136. doi:10.1016/j.jcis.2011.07.050

    Article  CAS  Google Scholar 

  • Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text East Eur 11(5):104–106

    Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod 32(3):627–633. doi:10.1016/j.indcrop.2010.07.018

    Article  CAS  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohyd Polym 84(1):211–215. doi:10.1016/j.carbpol.2010.11.022

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Hai YF, Zhang MX, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  • Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102(5):5050–5056. doi:10.1002/App.25105

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintron M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18(4):1085–1095. doi:10.1007/s10570-011-9546-7

    Article  CAS  Google Scholar 

  • Li RJ, Fei JM, Cai YR, Li YF, Feng JQ, Yao JM (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76(1):94–99. doi:10.1016/j.carbpol.2008.09.034

    Article  CAS  Google Scholar 

  • Luo HS, Hu JL, Zhu Y (2012) Path-dependent and selective multi-shape recovery of a polyurethane/cellulose-whisker nanocomposite. Mater Lett 89:172–175. doi:10.1016/j.matlet.2012.08.098

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849. doi:10.1002/adma.200702559

    Article  CAS  Google Scholar 

  • Pandey JK, Chu WS, Kim CS, Lee CS, Ahn SH (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos Part B-Eng 40(7):676–680. doi:10.1016/j.compositesb.2009.04.013

    Article  Google Scholar 

  • Pasquini D, Teixeira ED, Curvelo AAD, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crop Prod 32(3):486–490. doi:10.1016/j.indcrop.2010.06.022

    Article  CAS  Google Scholar 

  • Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138. doi:10.1016/j.carbpol.2011.08.084

    Article  CAS  Google Scholar 

  • Teixeira ED, Correa AC, Manzoli A, Leite FL, de Oliveira CR, Mattoso LHC (2010a) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606. doi:10.1007/s10570-010-9403-0

    Article  CAS  Google Scholar 

  • Teixeira ED, de Oliveira CR, Mattoso LHC, Correa AC, Paladin PD (2010b) Cotton nanofibers obtained by different hydrolytic acid conditions. Polimeros 20(4):264–268. doi:10.1590/S0104-14282010005000046

    Article  CAS  Google Scholar 

  • Teixeira ED, Lotti C, Correa AC, Teodoro KBR, Marconcini JM, Mattoso LHC (2011) Thermoplastic corn starch reinforced with cotton cellulose nanofibers. J Appl Polym Sci 120(4):2428–2433. doi:10.1002/App.33447

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. Compos Part a-Appl S 43(4):735–741. doi:10.1016/j.compositesa.2011.12.015

    Article  CAS  Google Scholar 

  • Wang YX, Tian HF, Zhang LN (2010) Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohyd Polym 80(3):665–671. doi:10.1016/j.carbpol.2009.10.043

    Article  CAS  Google Scholar 

  • Xu HHK, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC, Peltz M (2006) Nano DCPA-whisker composites with high strength and Ca and PO4 release. J Dent Res 85(8):722–727

    Article  CAS  Google Scholar 

  • Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187. doi:10.1007/s10570-012-9714-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the National Natural Science Foundation of China and the Civil Aviation Administration of China (grant no. 61079010). We are also grateful for the Fundamental Research Funds for the Central Universities (3122013P001). The authors thank Alfred D. French for constructive advice on the preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, G., Zou, Y. et al. Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21, 301–309 (2014). https://doi.org/10.1007/s10570-013-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0146-6

Keywords

Navigation