Skip to main content
Log in

Development and validation of KASP assays for genes underpinning key economic traits in bread wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We developed and validated a robust marker toolkit for high-throughput and cost-effective screening of a large number of functional genes in wheat.

Abstract

Functional markers (FMs) are the most valuable markers for crop breeding programs, and high-throughput genotyping for FMs could provide an excellent opportunity to effectively practice marker-assisted selection while breeding cultivars. Here we developed and validated kompetitive allele-specific PCR (KASP) assays for genes that underpin economically important traits in bread wheat including adaptability, grain yield, quality, and biotic and abiotic stress resistances. In total, 70 KASP assays either developed in this study or obtained from public databases were validated for reliability in application. The validation of KASP assays were conducted by (a) comparing the assays with available gel-based PCR markers on 23 diverse wheat accessions, (b) validation of the derived allelic information using phenotypes of a panel comprised of 300 diverse cultivars from China and 13 other countries, and (c) additional testing, where possible, of the assays in four segregating populations. All KASP assays being reported were significantly associated with the relevant phenotypes in the cultivars panel and bi-parental populations, thus revealing potential application in wheat breeding programs. The results revealed 45 times superiority of the KASP assays in speed than gel-based PCR markers. KASP has recently emerged as single-plex high-throughput genotyping technology; this is the first report on high-throughput screening of a large number of functional genes in a major crop. Such assays could greatly accelerate the characterization of crossing parents and advanced lines for marker-assisted selection and can complement the inflexible, high-density SNP arrays. Our results offer a robust and reliable molecular marker toolkit that can contribute towards maximizing genetic gains in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AACC (1995) Approved methods of the AACC, 9th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Anderson JV, Morris CF (2001) An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Sci 41:1697–1705

    Article  CAS  Google Scholar 

  • Bagge M, Xia X, Lubberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchene K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633

    Article  CAS  PubMed  Google Scholar 

  • Bernardo AN, Ma HX, Zhang D, Bai GH (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for fusarium head blight resistance. Mol Breed 29:477–488

    Article  Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant 1(2):14016

    Article  CAS  Google Scholar 

  • Chen F, Beecher BS, Morris CF (2010) Physical mapping and a new variant of puroindoline b-2 genes in wheat. Theor Appl Genet 120:745–751

    Article  PubMed  Google Scholar 

  • Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D (2013) Molecular characterization of vernalization and response genes in bread wheat from the yellow and huai valley of China. BMC Plant Biol 13:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the photoperiod-b1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Ma ZY, Xia XC, Zhang LP, He ZH (2012) Allelic variation at the TaZds-A1 locus on wheat chromosome 2A and development of a functional marker in common wheat. J Integr Agric 11:1067–1074

    Article  CAS  Google Scholar 

  • Dong LL, Wang FM, Liu T, Dong ZY, Li AL, Jing RL, Mao L, Li YW, Liu X, Zhang KP, Wang DW (2014) Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol Breed 34:937–947

    Article  CAS  Google Scholar 

  • Dreisigacker S, Sukumaran S, Guzmán C, He X, Lan C, Bonnett D, Crossa J (2015) Molecular marker-based selection tools in spring bread wheat improvement: CIMMYT experience and prospects. In: Rani RV, Rao SR, Raina SN (eds) Molecular breeding for sustainable crop improvement, vol 2. Springer, New York

    Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) Perfect markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65

    Article  CAS  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela HA, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudet M, Fara A-G, Beritognolo I, Sabatti M (2009) Allele-specific PCR in SNP genotyping. Method Mol Biol 578:415–424

    Article  CAS  Google Scholar 

  • Geng HW, Xia XC, Zhang LP, Qu YY, He ZH (2012) Development of Functional markers for a lipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat. Crop Sci 52:568–576

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline-a and -b. Proc Natl Acad Sci USA 95:6262–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, He ZH, Xia XC, Qu YY, Zhang Y (2014) Effect of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chem 91:623–630

    Article  Google Scholar 

  • Hanif M, Gao FM, Liu JD, Wen W, Zhang Y, Rasheed A, Xia XC, He ZH, Cao S (2016) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed 36:1

    Article  CAS  Google Scholar 

  • Hayden MJ, Tabone T, Mather DE (2009) Development and assessment of simple PCR markers for SNP genotyping in barley. Theor Appl Genet 119:939–951

    Article  CAS  PubMed  Google Scholar 

  • He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58

    Article  CAS  PubMed  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  CAS  PubMed  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    Article  CAS  Google Scholar 

  • Huang XQ, Brule-Babel A (2012) Sequence diversity, haplotype analysis, association mapping and functional marker development in the waxy and starch synthase IIa genes for grain-yield-related traits in hexaploid wheat (Triticum aestivum L.). Mol Breed 30:627–645

    Article  CAS  Google Scholar 

  • Huang XQ, Roder MS (2005) Development of SNP assays for genotyping the puroindoline b gene for grain hardness in wheat using pyrosequencing. J Agric Food Chem 53:2070–2075

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genom 11:49–61

    Article  CAS  Google Scholar 

  • Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X (2015) A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet 128:131–143

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Zhu X, Wang S, Zhu M, Carver BF, Yan L (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS One 8:e73330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CX, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Tang J, Pena RJ, Singh RP, He X, Shen X, Yao D, Xia XC, He ZH (2010) Characterization of CIMMYT bread wheats for highand low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235–250

    Article  CAS  Google Scholar 

  • Liu S, Pumphrey M, Gill BS, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J (2008a) Toward positional cloning of Fhb1, a major QTL for fusarium head blight resistance in wheat. Cereal Res Comm 36:195–201

    Article  CAS  Google Scholar 

  • Liu SX, Chao S, Anderson J (2008b) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    Article  CAS  PubMed  Google Scholar 

  • Liu YN, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SY, Rudd JC, Bai GH, Haley SD, Ibrahim AMH, Xue QW, Hays DB, Graybosch RA, Devkota RN, St Amand P (2014) Molecular markers linked to important genes in hard winter wheat. Crop Sci 54:1304–1321

    Article  CAS  Google Scholar 

  • Liu S, Sehgal SK, Lin M, Li J, Trick H, Gill BS, Bai GH (2015) Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol 208:936–948

    Article  PubMed  Google Scholar 

  • Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29(1):43–52

    Article  CAS  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744

    Article  CAS  PubMed  Google Scholar 

  • Mammadov M, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom 728398:1–11

    Article  Google Scholar 

  • Milec Z, Tomková L, Sumíková T, Pánková K (2012) A new multiplex PCR test for the determination of Vrn -B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed 30:317–323

    Article  CAS  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of mother of FT and TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelam K, Brown-Guedira G, Huang L (2013) Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31:233–237

    Article  CAS  Google Scholar 

  • Ragupathy R, Naeem HA, Reimer E, Lukow OM, Sapirstein HD, Cloutier S (2008) Evolutionary origin of the segmental duplication encompassing the wheat Glu-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116:283–296

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015a) RNA-seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015b) Polymarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DJ, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471

    CAS  Google Scholar 

  • Rasheed A, Xia XC, Yan YM, Appels R, Mahmood T, He ZH (2014) Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. J Cereal Sci 60:11–24

    Article  CAS  Google Scholar 

  • Rasheed A, Xia XC, Mahmood T, Quraishi UM, Aziz A, Bux H, Mahmood Z, Mirza JI, Mujeeb-Kazi A, He ZH (2016) Comparison of economically important loci in landraces and improved wheat cultivars from Pakistan. Crop Sci 55:1–15

    Google Scholar 

  • Rutkoski JE, Poland J, Singh RP, Huerta-Espino J, Bhavani S, Barbier H, Rouse MN, Jannick J-L, Sorrells ME (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. J Plant Genome 7:1–10

    Google Scholar 

  • Saito M, Vrinten P, Ishikawa G, Graybosch R, Nakamura T (2009) A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs. Mol Breed 23:209–217

    Article  CAS  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings CW, Xi KQ, Wanyera R, Manninger K, Ganzalez MI, Koyda M, Sanin S, Patzek LJ (2013) Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis 97:379–386

    Article  Google Scholar 

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and Υ-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    Article  CAS  PubMed  Google Scholar 

  • Sun YW, Jones HD, Yang Y, Dreisigacker S, Li SM, Chen XM, Shewry PR, Xia LQ (2012) Haplotype analysis of viviparous-1 gene in CIMMYT elite bread wheat germplasm. Euphytica 186:25–43

    Article  CAS  Google Scholar 

  • Tabone T, Mather DE, Hayden MJ (2009) Temperature switch PCR (TSP): robust assay design for reliable amplification and genotyping of SNPs. BMC Genom 10:580

    Article  Google Scholar 

  • Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simkova H, Dolezel J, Massi A, Ammar K, Kolmer J, Tuberosa R (2013) Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). Theor Appl Genet 126:1077–1101

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Reynolds MP, Salse J (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor Appl Genet 127:1463–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Sequencing IWG (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei B, Jing RL, Wang CS, Chen JB, Mao XG, Chang XP, Jia JZ (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    Article  CAS  Google Scholar 

  • Wei J, Geng H, Zhang Y, Liu J, Wen W, Zhang Y, Xia X, Chen X, He Z (2015) Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theor Appl Genet 128:2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013a) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenland AJ, Boulton MI, Powell W (2013b) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Xia LQ, Ganal MW, Shewry PR, He ZH, Yang Y, Roder MS (2008) Exploiting the diversity of viviparous-1 gene associated with pre-harvest sprouting tolerance in European wheat varieties. Euphytica 159:411–417

    Article  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ma YZ, Xu ZS, Chen XM, He ZH, Yu Z, Wilkinson M, Jones HD, Shewry PR, Xia LQ (2007) Isolation and characterization of viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot 58:2863–2871

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen XM, He ZH, Roder M, Xia LQ (2009) Distribution of Vp-1 alleles in chinese white-grained landraces, historical and current wheat cultivars. Cereal Res Commun 37:169–177

    Article  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Röder MS (2014) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann G, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Roder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller F (1973) 1B/1R Wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. University of Missouri, Columbia, pp 209–222

    Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Liu JD, Xia XC, He ZH (2014a) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107

    Article  CAS  Google Scholar 

  • Zhang YJ, Miao XL, Xia XC, He ZH (2014b) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu X, Xu W, Chang JZ, Li A, Mao XG, Zhang XY, Jing RL (2015a) Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep 5:12211

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W (2015b) A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytol 205:293–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Gao MX, Wang SS, Chen F, Cui DQ (2015c) Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci 6:470

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CF, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Profs. Robert McIntosh (University of Sydney), Yunbi Xu (CIMMYT-CAAS, China), Guihua Bai (K-State, USA) and Yuanfeng Hao (CIMMYT) for critical reviews of the manuscript. They are thankful to Drs. Yanwen Xiong and Jian Zhang (Huazhi Rice Bio-Tech Co. Ltd, Changsha, China) for providing technical support in SNPline® application. They are also thankful to Profs. Jizeng Jia, Xueyong Zhang (ICS-CAAS), Daowen Wang (IGDB-CAS) for providing the sequences of genes for marker development. This study was supported by the National Natural Science Foundation of China (31461143021), Beijing Municipal Science and Technology Project (D151100004415003), International Science and Technology Cooperation Program of China (2013DFG30530, 2014DFG31690), and the China Agricultural Research System (CARS-3-1-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghu He.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Communicated by D. E. Mather.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, A., Wen, W., Gao, F. et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129, 1843–1860 (2016). https://doi.org/10.1007/s00122-016-2743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2743-x

Keywords

Navigation