Skip to main content
Log in

Haplotype dictionary for the Rht-1 loci in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The introduction of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties was a key component of the ‘green revolution’ and today these alleles are the primary sources of semi-dwarfism in wheat. The Rht-1 loci encode DELLA proteins, which are transcription factors that affect plant growth and stress tolerance. In bread wheat, Rht-D1b and Rht-B1b influence resistance to the disease Fusarium Head Blight. To identify Rht-1 variants, locus specific primers were developed and used to sequence the entire open reading frame (ORF) and 1.7 kb of the 5′ and 0.5 kb of the 3′ flanking regions of Rht-A1 (Rht-A1+f), Rht-B1 (Rht-B1+f), and Rht-D1 (Rht-D1+f) in bread wheat (36 sequences from each genome) and tetraploid and diploid wheat (TDW) (one to three sequences from each genome). Among the bread wheat accessions, the Rht-A1+f and Rht-D1+f sequences contained relatively low genetic diversity and few haplotypes relative to the Rht-B1+f sequences. The TDW accessions were relatively rich in genetic diversity and contained the majority of the polymorphic sites. Novel polymorphisms, relative to ‘Chinese Spring’, discovered among the accessions include 160 and 197 bp insertions 5′ of Rht-B1 and a frameshift in the Rht-B1 ORF. Quantitative real-time PCR using shoot and leaf tissue from 5-day-old seedlings of genotypes lacking or containing the 5′ insertions revealed no major effect on Rht-B1 transcript accumulation. This research provides insights into the genetic diversity present at the Rht-1 loci in modern bread wheat and in relation to ancestral wheat accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Alvey L, Boulton MI (2008) DELLA proteins in signalling. Encyclopedia of Life Sciences. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123:153–160

    Article  CAS  Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor App Gen 114:1265–1275

    Article  Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Gen 94:557–563

    Article  CAS  Google Scholar 

  • Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Gen 125:1751–1765

    Article  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploidy wheat and their D-genome diploid ancestor. Genetics 167:941–947

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and Physiological Characterization. Plant Physiol 129:181–190

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M-C, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breeding 23:23–33

    Article  CAS  Google Scholar 

  • Cho CH, Hong BH, Park MW, Shim JW, Kim BK (1980) Origin, dissemination, and utilization of wheat semi-dwarf genes in Korea. Annu Wheat Newsl 27:67

    Google Scholar 

  • Chrpova JS, Skorpik M, Prasilova P, Sip V (2003) Detection of Norin 10 dwarfing genes in winter wheat varieties registered in the Czech Republic. Czech J Genet Plant Breed 39:89–92

    Google Scholar 

  • Coram TE, Wang MN, Chen XM (2008) Transcriptome analysis of the wheat - Puccinia striiformis f. sp tritici interaction. Molec Plant Pathol 9:157–169

    Article  CAS  Google Scholar 

  • Dalrymple DG (1986) Development and spread of high-yielding wheat varieties in developing countries. Agency for International Development, Washington

    Google Scholar 

  • Dan L, FangPing Y, ZhongHu H, DaNian Y, XianChun X (2009) Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin 42:17–27

    Google Scholar 

  • Doebley JF (2004) The genetics of maize evolution. Ann Rev Gen 38:37–59

    Article  CAS  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

  • Duan J, Wu J, Liu Y, Xiao J, Zhao G, Gu Y, Jia J, Kong X (2012) New cis-regulatory elements in the Rht-D1b locus region of wheat. Funct Integr Genomics 12:489–500

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploidy evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Gen 105:1038–1042

    Article  CAS  Google Scholar 

  • Febrer M, Wilhelm E, Al-Kaff N, Wright J, Powell W, Bevan MW, Boulton MI (2009) Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome 52:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding. Butterworth, London, pp 1–35

    Google Scholar 

  • Gilbert J, Tekauz A (2000) Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol 22:1–8

    Article  Google Scholar 

  • Guedira M, Brown-Guedira G, Van Sanford D, Sneller C, Souza E, Marshall D (2010) Distribution of Rht genes in modern and historic winter wheat cultivars from the Eastern and Central USA. Crop Sci 50:1811–1822

    Article  CAS  Google Scholar 

  • Gulyas G, Bognar Z, Lang L, Rakszegi M, Bedo Z (2011) Distribution of dwarfing genes (Rht-B1b and Rht-D1b) in Martonvasar wheat breeding materials. Acta Agron Hung 59:249–254

    Article  CAS  Google Scholar 

  • Haseneyer G, Ravel C, Dardevet M, Balfourier F, Sourdille P, Charmet G, Brunel D, Sauer S, Geiger HH, Graner A, Stracke S (2008) High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections. Theor Appl Genet 117:321–331

    Article  PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends in Genet 19:5–9

    Article  CAS  Google Scholar 

  • Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Path 48:202–208

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Nat Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    PubMed  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J 35:104–115

    Article  PubMed  CAS  Google Scholar 

  • Knopf C, Becker H, Ebmeyer E, Korzun V (2008) Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cer Res Comm 36:553–560

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bhosale S, Haussmann BIG, Stich B, Melchinger AE, Parzies HK (2010) Genetic diversity and linkage disequilibrium of two homologous genes to maize D8: sorghum SbD8 and pearl millet PgD8. J Plant Breed and Crop Sci 2:117–128

    CAS  Google Scholar 

  • Li XP, Zhao XQ, He X, Zhao GY, Li B, Liu DC, Zhang AM, Zhang XY, Tong YP, Li ZS (2011) Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat. New Phytol 189:449–458

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X (2012a) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291

    Article  PubMed  CAS  Google Scholar 

  • Li A, Yang W, Guo X, Liu D, Sun J, Zhang A (2012b) Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breeding 30:1443–1451

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • McGrann GRD, Townsend BJ, Antoniw JF, Asher MJC, Mutasa-Goettgens ES (2009) Barley elicits a similar early basal defence response during host and non-host interactions with Polymyxa root parasites. Eur J of Plant Pathol 123:5–15

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotation multiple sequence alignments. Distributed by the author (www.psc.edu/biomed/genedoc)

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterisation of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genet 43:169–173

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour F, Chalhoub B, Brunel D, Béckert M, Charmet G (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol 151:2133–2144

    Article  PubMed  CAS  Google Scholar 

  • Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M, Chandler E, Brown JKM, Boulton MI, Nicholson P (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Bot 63:1271–1283

    Article  Google Scholar 

  • Smith SM, Yuan Y, Doust AN, Bennetzen JL (2012) Haplotype analysis and linkage disequilibrium at five loci in Eragrostis tef. Genes Genomes Genet 2:407–419

    CAS  Google Scholar 

  • Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Gen 116:1145–1153

    Article  CAS  Google Scholar 

  • Srinivasachary, Gosman N, Steed A, Hollins TW, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Molec Biol 54:519–532

    Article  CAS  Google Scholar 

  • Tosovic-Maric B, Kobiljski B, Obreht D, Vapa L (2008) Evaluation of wheat Rht genes using molecular markers. Genetika 40:31–38

    Article  Google Scholar 

  • Uchida N, Townsley B, Chung K-H, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  Google Scholar 

  • Wang H, Wang X, Chen P, Liu D (2007) Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J of Genetics and Genomics 34:623–633

    Article  CAS  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Gen 116:439–453

    Article  CAS  Google Scholar 

  • Wilhelm EP, Howells RM, Al-Kaff N, Jia J, Baker C, Leverington-Waite MA, Griffiths S, Greenland AJ, Boulton MI, Powell W (2013) Genetic characterization and mapping of the Rht-1 homoeologs and flanking sequences in wheat. Theor Appl Gen. doi:10.1007/s00122-013-2055-3

    Google Scholar 

  • Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Li HB, Cai SB, Ma HX, Rebetzke GJ, Liu CJ (2011) Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Plant Path 60:506–512

    Article  Google Scholar 

  • Ye S, Dhillon S, Ke X, Collins AR, Day INM (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucl Acids Res 29(17):e88

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152:109–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NIAB trust for funding Ed Wilhelm’s research as part of a PhD, with assistance from the Biotechnology and Biological Sciences Research Council. We also thank the NIAB pre-breeding team, the NIAB horticultural staff, and the JIC horticultural staff for their assistance in growing plants, Jizeng Jia (Chinese Academy of Agricultural Sciences) for use of T. urartu sequence prior to publication, and Huw Jones (NIAB) for technical assistance with sequencing and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Wilhelm.

Additional information

Communicated by T. Miedaner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, E.P., Mackay, I.J., Saville, R.J. et al. Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126, 1733–1747 (2013). https://doi.org/10.1007/s00122-013-2088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2088-7

Keywords

Navigation