Skip to main content
Log in

A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the “green revolution” converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a ‘Chinese Spring’ wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Commun 31:331–338

    CAS  Google Scholar 

  • Borlaug NE (1983) Contributions of conventional plant breeding to food production. Science 219:689–693

    Article  Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Butterworth KJ (2000) Flowering time genes of wheat and their influence on environmental adaptability. PhD Thesis, University of East Anglia

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J Exp Bot 58:1231–1244

    Article  PubMed  Google Scholar 

  • Feschotte C, Wessler SR (2002) Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci USA 99:280–285

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    PubMed  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65

    Article  CAS  Google Scholar 

  • Fujimori S, Washio T, Tomita M (2005) GC-compositional strand bias around transcription start sites in plants and fungi. BMC Genomics 6: Art. No. 26

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley (Hordeum vulgare), rice (Oryza sativa) and Arabidopsis thaliana. Plant Physiol 131:1855–1867

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faridi MN (1988) Genetical studies of grain protein and developmental characters in wheat. PhD Thesis, University of Cambridge

  • Kato K, Yokoyama H (1992) Geographical variation in heading characters among wheat landraces, Triticum aestivum L, and its implication for their adaptability. Theor Appl Genet 84:259–265

    Article  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA (1997) Comparative genetics of flowering time in cereals. Plant Mol Biol 35:167–177

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  Google Scholar 

  • Law CN (1987) The genetic control of day-length response in wheat. In: Atherton JE (ed) Manipulation of flowering. Butterworths, London, pp 225–240

    Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day-length response in wheat. Heredity 41:185–191

    Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistaic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: Insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols in wheat. http://wheat.pw.usda.gov/ggpages/wgc/2003/

  • Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Lukman R, Ortiz-Islas S, William M, Worland AJ, van Beem J, Wenzel G (2004) Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat. Euphytica 138:33–40

    Article  CAS  Google Scholar 

  • Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci Biotechnol Biochem 69:410–414

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Robson F, Costa MMR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Scarth R, Law CN (1983) The location of the photoperiodic gene, Ppd2, and an additional genetic factor for ear-emergence on chromosome 2B of wheat. Heredity 51:607–619

    Google Scholar 

  • Scarth R, Law CN (1984) The control of the day-length response in wheat by the group 2 chromosomes. Z Pflanzenzuchtg 92:140–150

    Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of B-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Skøt L, Humphreys MO, Armstead I, Heywood S, Skot KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.) Mol Breed 15:233–245

    Article  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  PubMed  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1119

    Article  PubMed  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. 2nd edn. Academic, London

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Welsh JR, Keim DL, Pirasteh B, Richards RD (1973) Genetic control of photoperiod response in wheat. In: Proceedings of 4th International Wheat Genet Symposium. University of Missouri, Columbia, MO, USA, pp 879–884

  • Worland AJ (1999) The importance of Italian wheats to worldwide varietal improvement. J Genet Breed 53:165–173

    Google Scholar 

  • Worland AJ, Law CN (1986) Genetic-analysis of chromosome 2D of wheat. 1. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Z Pflanzenzuchtung 96:331–345

    Google Scholar 

  • Worland T, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Paris, pp 59–100

    Google Scholar 

  • Worland AJ, Appendino ML, Sayers EJ (1994) The distribution in European winter wheats of genes that influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica 80:219–228

    Article  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes to the adaptability of European winter wheats. Euphytica 100:385–394

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikara M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger MN, Farre EM, Taylor SR, Kay SA, Doyle FJ (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Molecular Systems Biology 2: Art. No. 58

  • Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005) The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Mol Biol 58:53–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 208/D18107 from the UK Biotechnology and Biological Sciences Research Council and by grant-in-aid to the John Innes Centre from the same source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Laurie.

Additional information

Communicated by P. Langridge.

J. Beales and A. Turner contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_603_MOESM1_ESM.pdf

Fig. S1 PCR amplification of a genome specific amplicon from the 3′ UTR of TaCO1 in ‘Chinese Spring’ nullisomic-tetrasomic lines. The respective nullisomic chromosome is indicated below each track and the arrow shows the expected band size. Absence of the band in the nullisomic 7B line shows that the product derives from this chromosome (PDF 95 kb)

122_2007_603_MOESM2_ESM.pdf

Fig. S2 PCR amplification of PRR gene amplicons from ‘Chinese Spring’ nullisomic-tetrasomic lines of the group 2 chromosomes. This shows that the amplicons used to measure the expression of the 2A, 2B and 2D PRR genes are specific to their respective chromosomes (PDF 216 kb)

Supplementary material (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beales, J., Turner, A., Griffiths, S. et al. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115, 721–733 (2007). https://doi.org/10.1007/s00122-007-0603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0603-4

Keywords

Navigation