Skip to main content
Log in

A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Winter wheat requires vernalization, a long exposure to low but non-freezing temperatures, to promote reproductive development. The vernalization requirement in bread wheat (Triticum aestivum L.) is mainly controlled by the Vrn-1 genes that are located on chromosomes 5A, 5B and 5D. Dominant alleles confer spring habit and are epistatic to the recessive winter alleles which means that spring varieties carry at least one dominant allele. To date, two dominant and one recessive Vrn-B1 alleles have been described. Vrn-B1a (formerly designated as Vrn-B1) differs from the winter vrn-B1 allele by a large deletion in intron 1. Vrn-B1b has an additional small deletion and is probably derived from Vrn-B1a. The novel allele described here and designated as Vrn-B1c also has a large deletion within intron 1 but with different breakpoints from Vrn-B1a or b, and sequence duplication, showing that this is an independently derived spring allele. By combining an exon 1 primer with previously published PCR primers it was possible to develop a multiplex PCR that distinguished all four alleles simultaneously. The multiplex PCR was validated by testing 320 winter wheat and 137 spring wheat varieties. This demonstrated that the novel Vrn-B1c allele was present in 25 spring varieties of diverse origin, showing this allele to be widely distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  PubMed  CAS  Google Scholar 

  • Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol Plant Mol Biol 11:191–238

    Article  CAS  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu DL, Valarik M, Sanchez A, Yan LL (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Leonova I, Pestsova E, Salina E, Efremova T, Roder M, Borner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed 122:209–212

    Article  CAS  Google Scholar 

  • Santra DK, Santra M, Allan RE, Campbell KG, Kidwell KK (2009) Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA. Plant Breed 128:576–584

    Article  CAS  Google Scholar 

  • Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, Snape JW (1998) Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97:103–109

    Article  CAS  Google Scholar 

  • Stelmakh AF (1987) Growth habit in common wheat (Triticum aestivum L. EM. Thell). Euphytica 36:513–519

    Article  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004a) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004b) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. John W. Snape from John Innes Centre (JIC) in Norwich, UK, for long-term support and for sharing his experience and knowledge in the field of genetics. Next, we acknowledge Dr. Adrian Turner (JIC) for his aid in sequencing of the novel allele Vrn-B1c and Dr. David Laurie (JIC) for comments on the manuscript. This work was supported by project OC09033 of the Ministry of Education, Youth and Sports of the Czech Republic, and by project MZE002700604 of the Ministry of Agriculture of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbyněk Milec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milec, Z., Tomková, L., Sumíková, T. et al. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breeding 30, 317–323 (2012). https://doi.org/10.1007/s11032-011-9621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9621-7

Keywords

Navigation