Skip to main content

Advertisement

Log in

Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

During two decades ago, Iran has exhibited remarkable increase in scientific publication in different aspects including tissue engineering and regenerative medicine (TERM). The field of TERM in Iran dates comes back to the early part of the 1990 and the advent of stem cell researches. Nowadays, Iran is one of the privileged countries in stem cell therapy in the Middle East. The next major milestone in TERM was application and fabrication of scaffolds for tissue engineering in the early 2000s with a focus on engineering bone and cartilage tissue. A good amount of thoughtful works has also yielded prototypes of other tissue substitutes such as nerve conduits, liver, and even heart. However, forward movement to clinical application of these products is still far from offering clinically acceptable solutions. In this study, we have presented a comprehensive review on the efforts of Iranian scientists in different issues of tissue engineering and regenerative medicine field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2, 403–430.

    Article  Google Scholar 

  2. Gheisari, Y., Baharvand, H., Nayernia, K., & Vasei, M. (2012). Stem cell and tissue engineering research in the Islamic Republic of Iran. Stem Cell Reviews and Reports, 8(3), 629–639.

    Article  CAS  Google Scholar 

  3. Sajjadi, S. M. S. (2008). Shahri Sokhta’s artificial eye, cultural heritage of Sistan & Baluchistan (1st ed.). Tehran: Forohar.

    Google Scholar 

  4. Noorbala, A. A. (2010). The organization and management of medical services to injured soldiers across the country and in the battlefields during the Iran-Iraq war. Archives of Iranian Medicine, 13, 367–369.

    Google Scholar 

  5. Mirzadeh, H., Mohagheghi, M., Ahmadi, H., Mirkhani, H., Amanpour, S., & Salehian, P. (2000). Cartilage tissue engineering for ear as in rabbit model with perforated polyurethane prosthesis: In vivo assay. Iranian Polymer Journal, 9, 73–79.

    CAS  Google Scholar 

  6. Mirzadeh, H., Katbab, A. A., Khorasani, M. T., Burford, R. P., Gorgin, E., & Golestani, A. (1995). Cell attachment to laser-induced AAm- and HEMA-grafted ethylene-propylene rubber as biomaterial: In vivo study. Biomaterials, 16(8), 641–648.

    Article  CAS  Google Scholar 

  7. Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V., & Moosavi, S. B. (2003). In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dental Materials, 19(3), 188–198.

    Article  CAS  Google Scholar 

  8. Salour, H., Owji, N., & Farahi, A. (2003). Two-stage procedure for management of large exposure defects of hydroxyapatite orbital implant. European Journal of Ophthalmology, 13(9–10), 789–793.

    CAS  Google Scholar 

  9. Tissue Regeneration Corporation. http://www.trcir.com.

  10. Chitotech Company. http://www.chitotech.com/index.php/en/.

  11. Baharvand, H., Ashtiani, S. K., Valojerdi, M. R., Shahverdi, A., Taee, A., & Sabour, D. (2004). Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst. Differentiation, 72(5), 224–229.

    Article  Google Scholar 

  12. Sadri-Ardekani, H., Mizrak, S. C., van Daalen, S. K., Repping, S., & van Pelt, A. M. (2009). Propagation of human spermatogonial stem cells in vitro. JAMA, 302(19), 2127–2134.

    Article  CAS  Google Scholar 

  13. Sadri-Ardekani, H., Akhondi, M. A., van der Veen, F., Repping, S., & van Pelt, A. M. (2011). In vitro propagation of human prepubertal spermatogonial stem cells. JAMA, 305(23), 2416–2418.

    Article  CAS  Google Scholar 

  14. Royan Institute. www.royaninstitute.org/cmsen/index.php?option=com_content&task=view&id=129&Itemid=1.

  15. Gharravi, A. M., Orazizadeh, M., Hashemitabar, M., Ansari-Asl, K., Banoni, S., & Alifard, A. (2012). Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds. Journal of Biomedical Science and Engineering, 5, 217–227.

    Article  CAS  Google Scholar 

  16. Karimabad, H. M., Shabestari, M., Baharvand, H., Vosough, A., Gourabi, H., Shahverdi, A., et al. (2011). Lack of beneficial effects of granulocyte colony-stimulating factor in patients with subacute myocardial infarction undergoing late revascularization: A double-blind, randomized, placebo-controlled clinical trial. Acta Cardiologica, 66(2), 219–224.

    Google Scholar 

  17. Mohamadnejad, M., Namiri, M., Bagheri, M., Hashemi, S. M., Ghanaati, H., Zare Mehrjardi, N., et al. (2007). Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World Journal of Gastroenterology, 13(24), 3359–3363.

    CAS  Google Scholar 

  18. Nikeghbalian, S., Pournasr, B., Aghdami, N., Rasekhi, A., Geramizadeh, B., Hosseini Asl, S. M., et al. (2011). Autologous transplantation of bone marrow-derived mononuclear and CD133+ cells in patients with decompensated cirrhosis. Archives of Iranian Medicine, 14(1), 12–17.

    Google Scholar 

  19. Khodadadi, L., Shafieyan, S., Sotoudeh, M., Dizaj, A. V., Shahverdi, A., Aghdami, N., et al. (2010). Intraepidermal injection of dissociated epidermal cell suspension improves vitiligo. Archives of Dermatological Research, 302(8), 593–599.

    Article  Google Scholar 

  20. Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F., & Nikbin, B. (2011). Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. International Journal of Rheumatic Diseases, 14(2), 211–215.

    Article  Google Scholar 

  21. Sadi, A. Y., Homaeigohar, S. S. H., Khavandi, A. R., & Javadpour, J. (2004). The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites. Journal of Materials Science: Materials in Medicine, 15(8), 853–858.

    CAS  Google Scholar 

  22. Homaeigohar, S. S. H., Shokrgozar, M. A., Sadi, A. Y., Khavandi, A., Javadpour, J., & Hosseinalipour, M. (2005). In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite. Journal of Biomedical Materials Research Part A, 75(1), 14–22.

    Article  CAS  Google Scholar 

  23. Eslaminejad, M. B., Mirzadeh, H., Mohamadi, Y., & Nickmahzar, A. (2007). Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1(6), 417–424.

    Article  CAS  Google Scholar 

  24. Mohammadi, Y., Soleimani, M., Fallahi-Sichani, M., Gazme, A., Haddadi-Asl, V., Arefian, E., et al. (2007). Nanofibrous poly (epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. International Journal of Artificial Organs, 30(3), 204–211.

    CAS  Google Scholar 

  25. Khojasteh, A., Behnia, H., Hosseini, F. S., Dehghan, M. M., Abbasnia, P., & Abbas, F. M. (2013). The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 101(5), 848–854.

    Article  CAS  Google Scholar 

  26. Mobini, S., Javadpour, J., Hosseinalipour, M., Ghazi-Khansari, M., Khavandi, A., & Rezaie, H. R. (2008). Synthesis and characterisation of gelatin–nano hydroxyapatite composite scaffolds for bone tissue engineering. Advances in Applied Ceramics, 107(1), 4–8.

    Article  CAS  Google Scholar 

  27. Tavakol, S., Azami, M., Khoshzaban, A., Ragerdi Kashani, I., Tavakol, B., Hoveizi, E., et al. (2013). Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat. Cell Biology International, 37(11), 1181–1189.

    CAS  Google Scholar 

  28. Hesaraki, S., Safari, M., & Shokrgozar, M. A. (2009). Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass. Journal of Materials Science: Materials in Medicine, 20(10), 2011–2017.

    CAS  Google Scholar 

  29. Hafezi, F., Hosseinnejad, F., Fooladi, A. A., Mafi, S. M., Amiri, A., & Nourani, M. R. (2012). Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. Journal of Materials Science: Materials in Medicine, 23(11), 2783–2792.

    CAS  Google Scholar 

  30. Mobini, S., Hoyer, B., Solati-Hashjin, M., Lode, A., Nosoudi, N., Samadikuchaksaraei, A., et al. (2013). Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Journal of Biomedical Materials Research Part A, 101(8), 2392–2404.

    Article  CAS  Google Scholar 

  31. Bigham-Sadegh, A., Oryan, A., Mirshokraei, P., Shadkhast, M., & Basiri, E. (2013). Bone tissue engineering with periosteal-free graft and pedicle omentum. ANZ Journal of Surgery, 83(4), 255–261.

    Article  Google Scholar 

  32. Sadegh, A. B., Basiri, E., Oryan, A., & Mirshokraei, P. (2014). Wrapped omentum with periosteum concurrent with adipose derived adult stem cells for bone tissue engineering in dog model. Cell Tissue Bank, 15(1), 127–137.

    Article  CAS  Google Scholar 

  33. Darzi, S., Zarnani, A. H., Jeddi-Tehrani, M., et al. (2012). Osteogenic differentiation of menstrual blood- versus bone marrow-derived stem cells in the presence of human platelet releasate. Tissue Engineering Part A, 18(15–16), 1720–1728.

    Article  CAS  Google Scholar 

  34. Ardeshirylajimi, A., Hosseinkhani, S., Parivar, K., Yaghmaie, P., & Soleimani, M. (2013). Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Molecular Biology Reports, 40(7), 4287–4294.

    Article  CAS  Google Scholar 

  35. Ardeshirylajimi, A., Dinarvand, P., Seyedjafari, E., Langroudi, L., Adegani, F. J., & Soleimani, M. (2013). Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell and Tissue Research, 354(3), 849–860.

    Article  CAS  Google Scholar 

  36. Kazemnejad, S., Najafi, R., Zarnani, A. H., & Eghtesad, S. (2014). Comparative effect of human platelet derivatives on proliferation and osteogenic differentiation of menstrual blood-derived stem cells. Molecular Biotechnology, 56(3), 223–231.

    Article  CAS  Google Scholar 

  37. Oryan, A., Meimandi Parizi, A., Shafiei-Sarvestani, Z., & Bigham, A. S. (2012). Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: Radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank, 13(4), 639–651.

    Article  CAS  Google Scholar 

  38. Parizi, A. M., Oryan, A., Shafiei-Sarvestani, Z., & Bigham, A. S. (2012). Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: Radiological, histological, macroscopical and biomechanical evaluation. Journal of Materials Science: Materials in Medicine, 23(2), 473–483.

    CAS  Google Scholar 

  39. Shayesteh, Y. S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A., & Ahmadbeigi, N. (2008). Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 106(2), 203–209.

    Article  Google Scholar 

  40. Behnia, H., Khojasteh, A., Soleimani, M., Tehranchi, A., & Atashi, A. (2012). Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. Journal of Cranio-Maxillo-Facial Surgery, 40(1), 2–7.

    Article  Google Scholar 

  41. Mirzadeh, H., Mohagheghi, M. A., Ahrnadi, H., Mirkhani, H., Amanpom, S., & Salehian, P. (2000). Cartilage tissue engineering for ear as in rabbit model with perforated polyurethane prosthesis: In vivo assay. Iranian Polymer Journal, 9(2), 73–79.

    CAS  Google Scholar 

  42. Shafiee, A., Soleimani, M., Chamheidari, G. A., Seyedjafari, E., Dodel, M., Atashi, A., et al. (2011). Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 99(3), 467–478.

    Article  CAS  Google Scholar 

  43. Matsiko, A., Levingstone, T. J., & O’Brien, F. J. (2013). Advanced strategies for articular cartilage defect repair. Materials, 6(2), 637–668.

    Article  CAS  Google Scholar 

  44. Kazemnejad, S., Akhondi, M. A., Soleimani, M., Zarnani, A. M., Khanmohammadi, M., Darzi, S., et al. (2012). Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanofibrous scaffold. International Journal of Artificial Organs, 2012(31), 55–66.

    Article  CAS  Google Scholar 

  45. Kazemnejad, S., Zarnani, A. H., Khanmohammadi, M., & Mobini, S. (2013). Chondrogenic differentiation of menstrual blood-derived stem cells on nanofibrous scaffolds. Methods in Molecular Biology, 1058, 149–169.

    CAS  Google Scholar 

  46. Hashemibeni, B., Goharian, V., Esfandiari, E., Sadeghi, F., Fasihi, F., Alipur, R., et al. (2012). An animal model study for repair of tracheal defects with autologous stem cells and differentiated chondrocytes from adipose-derived stem cells. Journal of Pediatric Surgery, 47(11), 1997–2003.

    Article  Google Scholar 

  47. Sotoudeh, A., Jahanshahi, A., Takhtfooladi, M. A., Bazazan, A., Ganjali, A., & Harati, M. P. (2013). Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit. Acta Cirurgica Brasileira, 28(5), 340–345.

    Article  Google Scholar 

  48. Shokrgozar, M. A., Bonakdar, S., Dehghan, M. M., Emami, S. H., Montazeri, L., Azari, S., et al. (2013). Biological evaluation of polyvinyl alcohol hydrogel crosslinked by polyurethane chain for cartilage tissue engineering in rabbit model. Journal of Materials Science: Materials in Medicine, 24(10), 2449–2460.

    CAS  Google Scholar 

  49. Bahrani, H., Razmkhah, M., Ashraf, M. J., Tanideh, N., Chenari, N., & Khademi, B. (2012). Differentiation of adipose-derived stem cells into ear auricle cartilage in rabbits. Journal of Laryngology and Otology, 126(8), 770–774.

    Article  CAS  Google Scholar 

  50. Autologous Transplantation of Mesenchymal Stem Cells (MSCs) and Scaffold in Full-thickness Articular Cartilage. http://clinicaltrials.gov/show/NCT00850187.

  51. Nazem, K., Safdarian, A., Fesharaki, M., Moulavi, F., Motififard, M., Zarezadeh, A., et al. (2011). Treatment of full thickness cartilage defects in human knees with Autologous Chondrocyte Transplantation. Journal of Research in Medical Sciences, 16(7), 855–861.

    Google Scholar 

  52. Royan Institute. www.royaninstitute.org/cmsen/index.php?option=com_content&task=view&id=536&Itemid=486.

  53. Khorsand, A., Eslaminejad, M. B., Arabsolghar, M., Paknejad, M., Ghaedi, B., Rokn, A. R., et al. (2013). Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. Journal of Oral Implantology, 39(4), 433–443.

    Article  Google Scholar 

  54. Mohammadi, M., Shokrgozar, M. A., & Mofid, R. (2007). Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study. Journal of Periodontology, 78(10), 1897–1903.

    Article  Google Scholar 

  55. Moslemi, N., Mousavi Jazi, M., Haghighati, F., Morovati, S. P., & Jamali, R. (2011). Acellular dermal matrix allograft versus subepithelial connective tissue graft in treatment of gingival recessions: A 5-year randomized clinical study. Journal of Clinical Periodontology, 38(12), 1122–1129.

    Article  Google Scholar 

  56. Oryan, A., Moshiri, A., Meimandi-Parizi, A., & Maffulli, N. (2014). Implantation of a novel biologic and hybridized tissue engineered bioimplant in large tendon defect: An in vivo investigation. Tissue Engineering Part A, 20(3–4), 447–465.

    CAS  Google Scholar 

  57. Moshiri, A., Oryan, A., Meimandi-Parizi, A. H., Silver, I. A., Tanideh, N., & Golestani, N. (in press). Effectiveness of hybridized nano and micro-structure biodegradable and biocompatible collagen-based, three-dimensional bioimplants, in repair of a large tendon-defect model in rabbits. Journal of Tissue Engineering and Regenerative Medicine.

  58. Oryan, A., Moshiri, A., & Meimandi-Parizi, A. (2014). Implantation of a novel tissue engineered graft in a large tendon defect initiated inflammation, accelerated fibroplasia and improved remodeling of the new Achilles tendon: A comprehensive detailed study with new insights. Cell and Tissue Research, 355(1), 59–80.

    Article  CAS  Google Scholar 

  59. Meimandi-Parizi, A., Oryan, A., & Moshiri, A. (2013). Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: A long term study with high clinical relevance. Journal of Biomedical Science, 20(1), 28.

    Article  CAS  Google Scholar 

  60. Meimandi-Parizi, A., Oryan, A., & Moshiri, A. (2013). Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: A comprehensive in vivo study. PLoS ONE, 8(9), e73016.

    Article  CAS  Google Scholar 

  61. Behfar, M., Sarrafzadeh-Rezaei, F., Hobbenaghi, R., Delirezh, N., & Dalir-Naghadeh, B. (2012). Enhanced mechanical properties of rabbit flexor tendons in response to intratendinous injection of adiposederived stromal vascular fraction. Current Stem Cell Research and Therapy, 7(3), 173–178.

    Article  CAS  Google Scholar 

  62. Esmaeili, F., Tiraihi, T., Movahedin, M., & Mowla, S. J. (2006). Selegiline induces neuronal phenotype and neurotrophins expression in embryonic stem cells. Rejuvenation Research, 9(4), 475–484.

    Article  CAS  Google Scholar 

  63. Baharvand, H., Mehrjardi, N. Z., Hatami, M., Kiani, S., Rao, M., & Haghighi, M. M. (2007). Neural differentiation from human embryonic stem cells in a defined adherent culture condition. International Journal of Developmental Biology, 51(5), 371–378.

    Article  CAS  Google Scholar 

  64. Anjomshoa, M., Karbalaie, K., Mardani, M., Razavi, S., Tanhaei, S., Nasr-Esfahani, M. H., et al. (2009). Generation of motor neurons by coculture of retinoic acid-pretreated embryonic stem cells with chicken notochords. Stem Cells and Development, 18(2), 259–267.

    Article  CAS  Google Scholar 

  65. Azizi, H., Mehrjardi, N. Z., Shahbazi, E., Hemmesi, K., Bahmani, M. K., & Baharvand, H. (2010). Dehydroepiandrosterone stimulates neurogenesis in mouse embryonal carcinoma cell- and human embryonic stem cell-derived neural progenitors and induces dopaminergic neurons. Stem Cells and Development, 19(6), 809–818.

    Article  CAS  Google Scholar 

  66. Hashemi, M. S., Ghaedi, K., Salamian A Karbalaie, A., Karbalaie, K., Emadi-Baygi, M., Tanhaei, S., et al. (2013). Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience, 231, 296–304.

    Article  CAS  Google Scholar 

  67. Fazeli, A. S., Nasrabadi, D., Pouya, A., Mirshavaladi, S., Sanati, M. H., Baharvand, H., et al. (2013). Proteome analysis of post-transplantation recovery mechanisms of an EAE model of multiple sclerosis treated with embryonic stem cell-derived neural precursors. Journal of Proteomics, 94, 437–450.

    Article  CAS  Google Scholar 

  68. Edalatmanesh, M. A., Bahrami, A. R., Hosseini, E., Hosseini, M., & Khatamsaz, S. (2011). Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: A behavioral study. Behavioural Brain Research, 225(1), 63–70.

    Article  Google Scholar 

  69. Edalatmanesh, M. A., Bahrami, A. R., Hosseini, E., Hosseini, M., & Khatamsaz, S. (2011). Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurological Research, 33(9), 913–920.

    Article  Google Scholar 

  70. Karamouzian, S., Nematollahi-Mahani, S. N., Nakhaee, N., & Eskandary, H. (2012). Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clinical Neurology and Neurosurgery, 114(7), 935–939.

    Article  Google Scholar 

  71. Edalat, H., Hajebrahimi, Z., Movahedin, M., Tavallaei, M., Amiri, S., & Mowla, S. J. (2011). p75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neuroscience Letters, 498(1), 15–19.

    Article  CAS  Google Scholar 

  72. Ahmadi, N., Razavi, S., Kazemi, M., & Oryan, S. (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue and Cell, 44(2), 87–94.

    Article  CAS  Google Scholar 

  73. Ghaderi, S., Soheili, Z. S., Ahmadieh, H., Davari, M., Jahromi, F. S., Samie, S., et al. (2011). Human amniotic fluid promotes retinal pigmented epithelial cells’ trans-differentiation into rod photoreceptors and retinal ganglion cells. Stem Cells and Development, 20(9), 1615–1625.

    Article  CAS  Google Scholar 

  74. Niknejad, H., Deihim, T., Ahmadiani, A., Jorjani, M., & Peirovi, H. (2012). Permanent expression of midbrain dopaminergic neurons traits in differentiated amniotic epithelial cells. Neuroscience Letters, 506(1), 22–27.

    Article  CAS  Google Scholar 

  75. Akhavan, O., & Ghaderi, E. (2013). Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale, 5(21), 10316–10326.

    Article  CAS  Google Scholar 

  76. Azari, H. (2013). Isolation and enrichment of defined neural cell populations from heterogeneous neural stem cell progeny. Methods in Molecular Biology, 1059, 95–106.

    Google Scholar 

  77. Azedi, F., Kazemnejad, S., Zarnani, A. H., et al. (2014). Differentiation potential of menstrual blood- versus bone marrow-stem cells into glial-like cells. Cell Biology International, 38(5), 615–624.

    Article  CAS  Google Scholar 

  78. Mostafavi, F. S., Razavi, S., Mardani, M., Esfandiari, E., Esfahani, H. Z., & Kazemi, M. (2014). Comparative study of microtubule-associated protein-2 and glial fibrillary acidic proteins during neural induction of human bone marrow mesenchymal stem cells and adipose-derived stem cells. International Journal of Preventive Medicine, 5(5), 584–595.

    Google Scholar 

  79. Bahmani, L., Taha, M. F., & Javeri, A. (2014). Coculture with embryonic stem cells improves neural differentiation of adipose tissue-derived stem cells. Neuroscience, 272, 229–239.

    Article  CAS  Google Scholar 

  80. Ebrahimi-Barough, S., Norouzi Javidan, A., Saberi, H., Joghataei, M. T., Rahbarghazi, R., Mirzaei, E., et al. (2014). Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Molecular Neurobiology. doi:10.1007/s12035-014-8931-2.

  81. Bonab, M. M., Sahraian, M. A., Aghsaie, A., Karvigh, S. A., Hosseinian, S. M., Nikbin, B., et al. (2012). Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: An open label study. Current Stem Cell Research and Therapy, 7(6), 407–414.

    Article  CAS  Google Scholar 

  82. Mohyeddin Bonab, M., Mohajeri, M., Sahraian, M. A., Yazdanifar, M., Aghsaie, A., Farazmand, A., et al. (2013). Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Archives of Medical Research, 44(4), 266–272.

    Article  CAS  Google Scholar 

  83. Karamouzian, S., Nematollahi-Mahani, S. N., Nakhaee, N., & Eskandary, H. (2012). Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clinical Neurology and Neurosurgery, 114(7), 935–939.

    Article  Google Scholar 

  84. Hatami, M., Mehrjardi, N. Z., Kiani, S., Hemmesi, K., Azizi, H., Shahverdi, A., et al. (2009). Human embryonic stem cell-derived neural precursor transplants in collage + n scaffolds promote recovery in injured rat spinal cord. Cytotherapy, 11(5), 618–630.

    Article  CAS  Google Scholar 

  85. Zaminy, A., Shokrgozar, M. A., Sadeghi, Y., Norouzian, M., Heidari, M. H., & Piryaei, A. (2013). Transplantation of schwann cells differentiated from adipose stem cells improves functional recovery in rat spinal cord injury. Archives of Iranian Medicine, 16(9), 533–541.

    Google Scholar 

  86. Timnak, A., Gharebaghi, F. Y., Shariati, R. P., Bahrami, S. H., Javadian, S., Emami, Sh H, et al. (2011). Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. Journal of Materials Science: Materials in Medicine, 22(6), 1555–1567.

    CAS  Google Scholar 

  87. Asmani, M. N., Ai, J., Amoabediny, G., Noroozi, A., Azami, M., Ebrahimi-Barough, S., et al. (2013). Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biology International, 37(12), 1340–1349.

    Article  CAS  Google Scholar 

  88. Navaei-Nigjeh, M., Amoabedini, G., Noroozi, A., Azami, M., Asmani, M. N., Ebrahimi-Barough, S., et al. (2014). Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. Journal of Biomedical Materials Research Part A, 102(8), 2533–2543.

    Article  CAS  Google Scholar 

  89. Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Mehrjerdi, N. Z., Nazarian, H., & Tahriri, M. (2010). Effect of poly-l-lysine coating on retinoic acid-loaded PLGA microspheres in the differentiation of carcinoma stem cells into neural cells. International Journal of Artificial Organs, 33(10), 721–730.

    Article  CAS  Google Scholar 

  90. Shahbazi, E., Kiani, S., Gourabi, H., & Baharvand, H. (2011). Electrospun nanofibrillar surfaces promote neuronal differentiation and function from human embryonic stem cells. Tissue Engineering Part A, 17(23–24), 3021–3031.

    Article  CAS  Google Scholar 

  91. Soleimani, M., Nadri, S., & Shabani, I. (2010). Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. International Journal of Developmental Biology, 54(8–9), 1295–1300.

    Article  CAS  Google Scholar 

  92. Rahjouei, A., Kiani, S., Zahabi, A., Mehrjardi, N. Z., Hashemi, M., & Baharvand, H. (2011). Interactions of human embryonic stem cell-derived neural progenitors with an electrospun nanofibrillar surface in vitro. International Journal of Artificial Organs, 34(7), 559–570.

    Article  CAS  Google Scholar 

  93. Alhosseini, S. N., Moztarzadeh, F., & Mozafari, M. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. The International Journal of Nanomedicine, 7, 25–34.

    CAS  Google Scholar 

  94. Zare-Mehrjardi, N., Khorasani, M. T., Hemmesi, K., Mirzadeh, H., Azizi, H., Sadatnia, B., et al. (2011). Differentiation of embryonic stem cells into neural cells on 3D poly (d, l-lactic acid) scaffolds versus 2D cultures. International Journal of Artificial Organs, 34(10), 1012–1023.

    Article  CAS  Google Scholar 

  95. Kabiri, M., Soleimani, M., Shabani, I., Futrega, K., Ghaemi, N., Ahvaz, H. H., et al. (2012). Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnology Letters, 34(7), 1357–1365.

    Article  CAS  Google Scholar 

  96. Ghoroghi, F. M., Hejazian, L. B., Esmaielzade, B., Dodel, M., Roudbari, M., & Nobakht, M. (2013). Evaluation of the effect of NT-3 and biodegradable poly-l-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro. The Journal of Molecular Neuroscience, 51(2), 318–327.

    Article  CAS  Google Scholar 

  97. Masaeli, E., Morshed, M., Nasr-Esfahani, M. H., Sadri, S., Hilderink, J., van Apeldoorn, A., et al. (2013). Fabrication, characterization and cellular compatibility of poly (hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE, 8(2), e57157.

    Article  CAS  Google Scholar 

  98. Zamani, F., Amani-Tehran, M., Latifi, M., & Shokrgozar, M. A. (2013). The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 24(6), 1551–1560.

    CAS  Google Scholar 

  99. Zamani, F., Amani-Tehran, M., Latifi, M., Shokrgozar, M. A., & Zaminy, A. (2014). Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds. Journal of Biomedical Materials Research Part A , 102(2), 506–513.

    Article  CAS  Google Scholar 

  100. Biazar, E., & Heidari, Keshel S. (2013). A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Communication and Adhesion, 20(1–2), 41–49.

    Article  CAS  Google Scholar 

  101. Ghoreishian, M., Rezaei, M., Beni, B. H., Javanmard, S. H., Attar, B. M., & Zalzali, H. (2013). Facial nerve repair with Gore-Tex tube and adipose-derived stem cells: an animal study in dogs. Journal of Oral and Maxillofacial Surgery, 71(3), 577–587.

    Article  Google Scholar 

  102. Emam-Reza Hospital. http://www.mums.ac.ir/emamreza/en/clinics.

  103. Ayaz, M. (2013). An approach to ‘use of split-thickness plantar skin grafts in the treatment of hyperpigmented skin-grafted fingers and palms in previously burned patients’. Burns, 39(8), 1650–1651.

    Article  Google Scholar 

  104. Babaeijandaghi, F., Shabani, I., Seyedjafari, E., Naraghi, Z. S., Vasei, M., Haddadi-Asl, V., et al. (2010). Accelerated epidermal regeneration and improved dermal reconstruction achieved by polyethersulfone nanofibers. Tissue Engineering Part A, 16(11), 3527–3536.

    Article  CAS  Google Scholar 

  105. Biazar, E., & Keshel, S. H. (2013). The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. Journal of Biomedical Nanotechnology, 9(9), 1471–1482.

    Article  CAS  Google Scholar 

  106. Gholipour-Kanani, A., Bahrami, S. H., Samadi-Kochaksaraie, A., Ahmadi-Tafti, H., Rabbani, S., Kororian, A., et al. (2012). Effect of tissue-engineered chitosan-poly(vinyl alcohol) nanofibrous scaffolds on healing of burn wounds of rat skin. IET Nanobiotechnology, 6(4), 129–135.

    Article  CAS  Google Scholar 

  107. Hoveizi, E., Nabiuni, M., Parivar, K., Rajabi-Zeleti, S., & Tavakol, S. (2014). Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biology International, 38(1), 41–49.

    Article  CAS  Google Scholar 

  108. Keshel, S. H., Biazar, E., Rezaei Tavirani, M., Rahmati Roodsari, M., Ronaghi, A., Ebrahimi, M., et al. (2014). The healing effect of unrestricted somatic stem cells loaded in collagen-modified nanofibrous PHBV scaffold on full-thickness skin defects. Artif Cells Nanomedicine and Biotechnology, 42(3), 210–216.

    Article  CAS  Google Scholar 

  109. Vatankhah, E., Prabhakaran, M. P., Jin, G., Mobarakeh, L. G., & Ramakrishna, S. (2014). Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. Journal of Biomaterials Applications, 28(6), 909–921.

    Article  CAS  Google Scholar 

  110. Maharlooei, M. K., Bagheri, M., Solhjou, Z., Jahromi, B. M., Akrami, M., Rohani, L., et al. (2011). Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Research and Clinical Practice, 93(2), 228–234.

    Article  Google Scholar 

  111. Bakhshayesh, M., Soleimani, M., Mehdizadeh, M., & Katebi, M. (2012). Effects of TGF-β and b-FGF on the potential of peripheral blood-borne stem cells and bone marrow-derived stem cells in wound healing in a murine model. Inflammation, 35(1), 138–142.

    Article  CAS  Google Scholar 

  112. Azari, O., Babaei, H., Derakhshanfar, A., Nematollahi-Mahani, S. N., Poursahebi, R., & Moshrefi, M. (2011). Effects of transplanted mesenchymal stem cells isolated from Wharton’s jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Veterinary Research Communications, 35(4), 211–222.

    Article  Google Scholar 

  113. Hosseini, S. N., Mousavinasab, S. N., Rahmanpour, H., & Fallahnezhad, M. (2009). A biological dressing versus ‘conventional’ treatment in patients with massive burns: A clinical trial. Ulus Travma Acil Cerrahi Derg, 15(2), 135–140.

    Google Scholar 

  114. Kordestani, S., Shahrezaee, M., Tahmasebi, M. N., Hajimahmodi, H., Haji Ghasemali, D., & Abyaneh, M. S. (2008). A randomised controlled trial on the effectiveness of an advanced wound dressing used in Iran. Journal of Wound Care, 17(7), 323–327.

    Article  CAS  Google Scholar 

  115. Mohammadi, A. A., Seyed Jafari, S. M., Kiasat, M., Tavakkolian, A. R., Imani, M. T., Ayaz, M., & Tolide-ie, H. R. (2013). Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns, 39(2), 349–353.

    Article  Google Scholar 

  116. Fijan, A., Hashemi, A., & Namazi, H. (2014). A novel use of amniotic membrane for fingertip injuries. Journal of Wound Care, 23(5), 255–258.

    Article  CAS  Google Scholar 

  117. Talaei, M., Sarrafzadegan, N., Sadeghi, M., Oveisgharan, S., Marshall, T., Thomas, G. N., et al. (2013). Incidence of cardiovascular diseases in an Iranian population: The Isfahan cohort study. Archives of Iranian Medicine, 16(3), 138–144.

    CAS  Google Scholar 

  118. Baharvand, H., Piryaei, A., Rohani, R., Taei, A., Heidari, M. H., & Hosseini, A. (2006). Ultrastructural comparison of developing mouse embryonic stem cell- and in vivo-derived cardiomyocytes. Cell Biology International, 30(10), 800–807.

    Article  CAS  Google Scholar 

  119. Khezri, S., Valojerdi, M. R., Sepehri, H., & Baharvand, H. (2007). Effect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cells. Saudi Medical Journal, 28(2), 181–186.

    Google Scholar 

  120. Hatami, L., Valojerdi, M. R., & Mowla, S. J. (2007). Effects of oxytocin on cardiomyocyte differentiation from mouse embryonic stem cells. International Journal of Cardiology, 117(1), 80–89.

    Article  Google Scholar 

  121. Abtahi, S. R., Sadraei, H., Nematollahi, M., Karbalaie, K., Karamali, F., Salamian, A., et al. (2012). Functional expression of potassium channels in cardiomyocytes derived from embryonic stem cells. Research in Pharmaceutical Sciences, 7(1), 1–11.

    CAS  Google Scholar 

  122. Fonoudi, H., Yeganeh, M., Fattahi, F., Ghazizadeh, Z., Rassouli, H., Alikhani, M., et al. (2013). ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells. PLoS ONE, 8(1), e55577.

    Article  CAS  Google Scholar 

  123. Kadivar, M., Khatami, S., Mortazavi, Y., Shokrgozar, M. A., Taghikhani, M., & Soleimani, M. (2006). In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 340(2), 639–647.

    Article  CAS  Google Scholar 

  124. Rouhi, L., Kajbafzadeh, A. M., Modaresi, M., Shariati, M., & Hamrahi, D. (2013). Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1). Vitro Cellular and Developmental Biology, 49(4), 287–294.

    Article  CAS  Google Scholar 

  125. Vojdani, Z., Tavakolinejad, S., Talaei-Khozani, T., Esmaeilpour, T., & Rasooli, M. (2011). Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract. Human Cell, 24(1), 35–42.

    Article  CAS  Google Scholar 

  126. Latifpour, M., Nematollahi-Mahani, S. N., Deilamy, M., Azimzadeh, B. S., Eftekhar-Vaghefi, S. H., Nabipour, F., et al. (2011). Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology, 120(1), 9–18.

    Google Scholar 

  127. Rahimi, M., Zarnani, A. H., Mohseni-Kouchesfehani, H., Soltanghoraei, H., Akhondi, M. M., & Kazemnejad, S. (2014). Comparative evaluation of cardiac markers in differentiated cells from menstrual blood and bone marrow-derivedstem cells in vitro. Molecular Biotechnology, 56(12), 1151–1162.

    Article  CAS  Google Scholar 

  128. Rahimi, M., Mohseni-Kouchesfehani, H., Zarnani, A. H., Mobini, S., Nikoo, S., & Kazemnejad, S. (2014). Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiactissue engineering. Journal of Biomaterials Applications, 29(2), 199–208.

    Article  CAS  Google Scholar 

  129. Soleimani, M., Mohammadi, Y., Ahmadbeigi, N., Ahmadi Tafti, H., Nassiri, S. M., Boroumand, M. A., et al. (2008). Tissue cardiomyoplasty using multi-layer cell-seeded nano-structural scaffolds to repair damaged myocardium: An experimental pilot study. Archives of Medical Science, 4, 364–470.

    Google Scholar 

  130. Ahmadi, H., Baharvand, H., Ashtiani, S. K., Soleimani, M., Sadeghian, H., Ardekani, J. M., et al. (2007). Safety analysis and improved cardiac function following local autologous transplantation of CD133 (+) enriched bone marrow cells after myocardial infarction. Current Neurovascular Research, 4(3), 153–160.

    Article  Google Scholar 

  131. Ahmadi, H., Farahani, M. M., Kouhkan, A., Moazzami, K., Fazeli, R., Sadeghian, H., et al. (2012). Five-year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction. Archives of Iranian Medicine, 15(1), 32–35.

    Google Scholar 

  132. Zeinaloo, A., Zanjani, K. S., Bagheri, M. M., Mohyeddin-Bonab, M., Monajemzadeh, M., & Arjmandnia, M. H. (2011). Intracoronary administration of autologous mesenchymal stem cells in a critically ill patient with dilated cardiomyopathy. Pediatric Transplantation, 15(8), E183–E186.

    Article  Google Scholar 

  133. Zafarghandi, M. R., Ravari, H., Aghdami, N., Namiri, M., Moazzami, K., Taghiabadi, E., et al. (2010). Safety and efficacy of granulocyte-colony-stimulating factor administration following autologous intramuscular implantation of bone marrow mononuclear cells: A randomized controlled trial in patients with advanced lower limb ischemia. Cytotherapy, 12(6), 783–791.

    Article  CAS  Google Scholar 

  134. Malek-hosseini, S. A., Salahi, H., Lahsaee, M., Bahador, A., Lankarani, M. B., Imanieh, M. H., et al. (2003). Initial experience with liver transplantation in Iran. Transplant Proceedings, 35(1), 375–376.

    Article  CAS  Google Scholar 

  135. Kazemnejad, S., Allameh, A., Soleimani, M., Gharehbaghian, A., Mohammadi, Y., Amirizadeh, N., et al. (2009). Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24(2), 278–287.

    Article  CAS  Google Scholar 

  136. Hashemi, S. M., Soleimani, M., Zargarian, S. S., Haddadi-Asl, V., Ahmadbeigi, N., Soudi, S., et al. (2009). In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly (epsilon-caprolactone) nanofiber scaffolds. Cells Tissues Organs, 190(3), 135–149.

    Article  CAS  Google Scholar 

  137. Ghaedi, M., Lotfi, A. S., & Soleimani, M. (2010). Establishment of lentiviral-vector-mediated model of human alpha-1 antitrypsin delivery into hepatocyte-like cells differentiated from mesenchymal stem cells. Tissue and Cell, 42(3), 181–189.

    Article  CAS  Google Scholar 

  138. Piryaei, A., Valojerdi, M. R., Shahsavani, M., & Baharvand, H. (2011). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Reviews and Reports, 7(1), 103–118.

    Article  CAS  Google Scholar 

  139. Farzaneh, Z., Pournasr, B., Ebrahimi, M., Aghdami, N., & Baharvand, H. (2010). Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Reviews and Reports, 6(4), 601–610.

    Article  CAS  Google Scholar 

  140. Mohamadnejad, M., Namiri, M., Bagheri, M., Hashemi, S. M., Ghanaati, H., Zare Mehrjardi, N., et al. (2007). Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World Journal of Gastroenterology, 13(24), 3359–3363.

    CAS  Google Scholar 

  141. Kharaziha, P., Hellström, P. M., Noorinayer, B., Farzaneh, F., Aghajani, K., Jafari, F., et al. (2009). Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: A phase I-II clinical trial. European Journal of Gastroenterology and Hepatology, 21(10), 1199–1205.

    Article  CAS  Google Scholar 

  142. Mohamadnejad, M., Pournasr, B., Bagheri, M., Aghdami, N., Shahsavani, M., Hosseini, L. A., et al. (2010). Transplantation of allogeneic bone marrow mesenchymal stromal cell-derived hepatocyte-like cells in homozygous familial hypercholesterolemia. Cytotherapy, 12(4), 566–568.

    Article  Google Scholar 

  143. Miryounesi, M., Piryaei, A., Pournasr, B., Aghdami, N., & Baharvand, H. (2013). Repeated versus single transplantation of mesenchymal stem cells in carbon tetrachloride-induced liver injury in mice. Cell Biology International, 37(4), 340–347.

    Article  CAS  Google Scholar 

  144. Khanjani, S., Khanmohammadi, M., Zarnani, A. H., Talebi, S., Edalatkhah, H., Eghtesad, S., et al. (in press). Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine.

  145. Khanjani, S., Khanmohammadi, M., Zarnani, A. H., Akhondi, M. M., Ahani, A., Ghaempanah, Z., et al. (2014). Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow-derived stem cells into hepatocytelike cells. PLoS One, 9, e86075.

    Article  CAS  Google Scholar 

  146. Vosough, M., Omidinia, E., Kadivar, M., Shokrgozar, M. A., Pournasr, B., Aghdami, N., et al. (2013). Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells and Development, 22(20), 2693–2705.

    Article  CAS  Google Scholar 

  147. Moslem, M., Valojerdi, M. R., Pournasr, B., Muhammadnejad, A., & Baharvand, H. (2013). Therapeutic potential of human induced pluripotent stem cell-derived mesenchymal stem cells in mice with lethal fulminant hepatic failure. Cell Transplantation, 22(10), 1785–1799.

    Article  Google Scholar 

  148. Baharvand, H., Jafary, H., Massumi, M., & Ashtiani, S. K. (2006). Generation of insulin-secreting cells from human embryonic stem cells. Development, Growth and Differentiation, 48(5), 323–332.

    Article  CAS  Google Scholar 

  149. Neshati, Z., Matin, M. M., Bahrami, A. R., & Moghimi, A. (2010). Differentiation of mesenchymal stem cells to insulin-producing cells and their impact on type 1 diabetic rats. Journal of Physiology and Biochemistry, 66(2), 181–187.

    Article  CAS  Google Scholar 

  150. Niki Boroujeni, Z., & Aleyasin, A. (2014). Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo. Biotechnology and Applied Biochemistry, 61(2), 82–92.

    Article  CAS  Google Scholar 

  151. Rahmati, S., Alijani, N., & Kadivar, M. (2013). In vitro generation of glucose-responsive insulin producing cells using lentiviral based pdx-1 gene transduction of mouse (C57BL/6) mesenchymal stem cells. Biochemical and Biophysical Research Communications, 437(3), 413–419.

    Article  CAS  Google Scholar 

  152. Talebi, S., Aleyasin, A., Soleimani, M., & Massumi, M. (2012). Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnology and Applied Biochemistry, 59(3), 205–212.

    Article  CAS  Google Scholar 

  153. Lahmy, R., Soleimani, M., Sanati, M. H., Behmanesh, M., Kouhkan, F., & Mobarra, N. (in press). Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. Journal of Tissue Engineering and Regenerative Medicine.

  154. Moshtagh, P. R., Emami, S. H., & Sharifi, A. M. (2013). Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: An in vitro study. Journal of Physiology and Biochemistry, 69(3), 451–458.

    Article  CAS  Google Scholar 

  155. Sojoodi, M., Farrokhi, A., Moradmand, A., & Baharvand, H. (2013). Enhanced maintenance of rat islets of Langerhans on laminin-coated electrospun nanofibrillar matrix in vitro. Cell Biology International, 37(4), 370–379.

    Article  CAS  Google Scholar 

  156. Aldavood, S. J., Behyar, R., Sarchahi, A. A., Rad, M. A., Noroozian, I., Ghamsari, S. M., et al. (2003). Effect of acetylcysteine on experimental corneal wounds in dogs. Ophthalmic Research, 35(6), 319–323.

    Article  CAS  Google Scholar 

  157. Oskouee, S. J., Amuzadeh, J., & Rajabi, M. T. (2007). Bandage contact lens and topical indomethacin for treating persistent corneal epithelial defects after vitreoretinal surgery. Cornea, 26(10), 1178–1181.

    Article  Google Scholar 

  158. Siatiri, H., Moghimi, S., Malihi, M., & Khodabande, A. (2008). Use of sealant (HFG) in corneal perforations. Cornea, 27(9), 988–991.

    Article  Google Scholar 

  159. Baharvand, H., Ebrahimi, M., & Javadi, M. A. (2007). Comparison of characteristics of cultured limbal cells on denuded amniotic membrane and fresh conjunctival, limbal and corneal tissues. Development, Growth and Differentiation, 49(3), 241–251.

    Article  CAS  Google Scholar 

  160. Baharvand, H., Heidari, M., Ebrahimi, M., Valadbeigi, T., & Salekdeh, G. H. (2007). Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche. Molecular Vision, 13, 1711–1721.

    CAS  Google Scholar 

  161. Ebrahimi, M., Mohammadi, P., Daryadel, A., & Baharvand, H. (2010). Assessment of heat shock protein (HSP60, HSP72, HSP90, and HSC70) expression in cultured limbal stem cells following air lifting. Molecular Vision, 16, 1680–1688.

    CAS  Google Scholar 

  162. Shahriari, H. A., Tokhmehchi, F., Reza, M., & Hashemi, N. F. (2008). Comparison of the effect of amniotic membrane suspension and autologous serum on alkaline corneal epithelial wound healing in the rabbit model. Cornea, 27(10), 1148–1150.

    Article  CAS  Google Scholar 

  163. Fallah, M. R., Golabdar, M. R., Amozadeh, J., Zare, M. A., Moghimi, S., & Fakhraee, G. (2008). Transplantation of conjunctival limbal autograft and amniotic membrane vs mitomycin C and amniotic membrane in treatment of recurrent pterygium. Eye (London), 22(3), 420–424.

    Article  CAS  Google Scholar 

  164. Baradaran-Rafii, A., Ebrahimi, M., Kanavi, M. R., Taghi-Abadi, E., Aghdami, N., Eslani, M., et al. (2010). Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea, 29(5), 502–509.

    Article  Google Scholar 

  165. Kheirkhah, A., & Karimian, F. (2010). A case of autologous cultivated limbal stem cell transplantation. Journal of Ophthalmic and Vision Research, 5(2), 130–135.

    Google Scholar 

  166. Kheirkhah, A., Ghaffari, R., Kaghazkanani, R., Hashemi, H., Behrouz, M. J., & Raju, V. K. (2013). A combined approach of amniotic membrane and oral mucosa transplantation for fornix reconstruction in severe symblepharon. Cornea, 32(2), 155–160.

    Article  Google Scholar 

  167. Karimian, F., Baradaran-Rafii, A., Faramarzi, A., & Akbari, M. (2014). Limbal stem cell-sparing lamellar keratoplasty for the management of advanced keratoglobus. Cornea, 33(1), 105–108.

    Article  Google Scholar 

  168. Movahedan, H., Anvari-Ardekani, H. R., & Nowroozzadeh, M. H. (2013). Limbal stem cell transplantation for gelatinous drop-like corneal dystrophy. Journal of Ophthalmic and Vision Research, 8(2), 107–112.

    Google Scholar 

  169. Bakhshandeh, H., Soleimani, M., Hosseini, S. S., Hashemi, H., Shabani, I., Shafiee, A., et al. (2011). Poly (epsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. The International Journal of Nanomedicine, 6, 1509–1515.

    CAS  Google Scholar 

  170. Karkhaneh, A., Mirzadeh, H., Ghaffariyeh, A., Ebrahimi, A., Honarpisheh, N., Hosseinzadeh, M., et al. (2011). Novel materials to enhance corneal epithelial cell migration on keratoprosthesis. British Journal of Ophthalmology, 95(3), 405–409.

    Article  Google Scholar 

  171. Akrami, H., Soheili, Z. S., Khalooghi, K., Ahmadieh, H., Rezaie-Kanavi, M., Samiei, S., et al. (2009). Retinal pigment epithelium culture;a potential source of retinal stem cells. Journal of Ophthalmic and Vision Research, 4(3), 134–141.

    CAS  Google Scholar 

  172. Nadri, S., Kazemi, B., Eslaminejad, M. B., Yazdani, S., & Soleimani, M. (2013). High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Molecular Biology Reports, 40(6), 3883–3890.

    Article  CAS  Google Scholar 

  173. Amirpour, N., Karamali, F., Rabiee, F., Rezaei, L., Esfandiari, E., Razavi, S., et al. (2012). Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells and Development, 21(1), 42–53.

    Article  CAS  Google Scholar 

  174. Haddad-Mashadrizeh, A., Bahrami, A. R., Matin, M. M., Edalatmanesh, M. A., Zomorodipour, A., Gardaneh, M., et al. (2013). Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation, 20(3), 165–176.

    Google Scholar 

  175. Gheisari, Y., Nassiri, S. M., Arefian, E., Ahmadbeigi, N., Azadmanesh, K., Jamali, M., et al. (2010). Severely damaged kidneys possess multipotent renoprotective stem cells. Cytotherapy, 12(3), 303–312.

    Article  CAS  Google Scholar 

  176. Gheisari, Y., Ahmadbeigi, N., Naderi, M., Nassiri, S. M., Nadri, S., & Soleimani, M. (2011). Stem cell-conditioned medium does not protect against kidney failure. Cell Biology International, 35(3), 209–213.

    Article  Google Scholar 

  177. Ahvaz, H. H., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Naji, M., Dodel, M., et al. (2013). Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering. Journal of Nanoscience and Nanotechnology, 13(7), 4736–4743.

    Article  CAS  Google Scholar 

  178. Ahvaz, H. H., Soleimani, M., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Soudi, S., et al. (2012). Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. Journal of Materials Science: Materials in Medicine, 23(9), 2281–2290.

    CAS  Google Scholar 

  179. Ajalloueian, F., Zeiai, S., Rojas, R., Fossum, M., & Hilborn, J. (2013). One-tage tissue engineering of bladder wall patches for an easy-to-use approach at the surgical table. Tissue Engineering Part C: Methods, 19(9), 688–696.

    Article  CAS  Google Scholar 

  180. Shoae-Hassani, A., Mortazavi-Tabatabaei, S. A., Sharif, S., Seifalian, A. M., Azimi, A., Samadikuchaksaraei, A., et al. (in press). Differentiation of human endometrial stem cells into urothelial cells on a three dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. Journal of Tissue Engineering and Regenerative Medicine.

  181. Shakeri, S., Haghpanah, A., Khezri, A., Yazdani, M., Monabbati, A., Haghpanah, S., et al. (2009). Application of amniotic membrane as xenograft for urethroplasty in rabbit. International Urology and Nephrology, 41(4), 895–901.

    Article  Google Scholar 

  182. Kajbafzadeh, A. M., Esfahani, S. A., Sadeghi, Z., Elmi, A., & Monajemzadeh, M. (2012). Application of different scaffolds for bladder wall regeneration: the bladder as a natural bioreactor. Tissue Engineering Part A, 18(7–8), 882–887.

    Article  CAS  Google Scholar 

  183. Kajbafzadeh, A. M., Esfahani, S. A., Talab, S. S., Elmi, A., & Monajemzadeh, M. (2011). In-vivo autologous bladder muscular wall regeneration: Application of tissue-engineered pericardium in a model of bladder as a bioreactor. Journal of Pediatric Urology, 7(3), 317–323.

    Article  Google Scholar 

  184. Shirvan, M. K., Alamdari, D. H., Mahboub, M. D., Ghanadi, A., Rahimi, H. R., & Seifalian, A. M. (2013). A novel cell therapy for stress urinary incontinence, short-term outcome. Neurourology and Urodynamics, 32(4), 377–382.

    Article  CAS  Google Scholar 

  185. Samadikuchaksaraei, A., & Mousavizadeh, K. (2008). High-tech biomedical research: Lessons from Iran’s experience. BioMedical Engineering Online, 7, 17.

    Article  Google Scholar 

  186. 737th meeting dated 23/7/92 SCCR and paragraph (3.2) of Chapter III of the comprehensive plan document. http://sccr.ir/pages/simpleView.aspx?provID=1887.

Download references

Acknowledgments

We would like to thank the Iranian council for stem cell research and technology development for financial support. Because of space restrictions, we could not cite all studies. Therefore, we hereby extend our sincere apologies to these honorable investigators.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Additional information

The authors Sahba Mobini and Manijeh Khanmohammadi have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobini, S., Khanmohammadi, M., Heidari-Vala, H. et al. Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook. Mol Biotechnol 57, 589–605 (2015). https://doi.org/10.1007/s12033-015-9865-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9865-2

Keywords

Navigation