Skip to main content
Log in

Differentiation of Bone Marrow-derived Mesenchymal Stem Cells into Hepatocyte-like Cells on Nanofibers and Their Transplantation into a Carbon Tetrachloride-Induced Liver Fibrosis Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

There are limited data available on the effect of a physicochemical microenvironment on mesenchymal stem cell (MSC) differentiation and repopulation of the liver. Therefore, in this study nanofibers have been used to better differentiate and maintain the function and engraftment of differentiating MSCs both in vitro and in vivo. Mouse MSCs were differentiated into early (day 18) and late (day 36) hepatocyte-like cells (HLCs) in the presence or absence of ultraweb nanofibers (nano+ and nano) and their transplantation for recovery in mice with CCl4 induced hepatic fibrosis was investigated. In the nano+ group, hepatocyte markers-ALB and HNF4α- were elevated in a time-dependent manner; however, those were similar levels or slightly decreased in the nano group from day 18 to 36. Ultrastructural studies of the differentiated cells revealed some similarities to hepatocytes. Urea production, secretion of albumin and α-fetoprotein, and metabolic activity of the CYP450 enzymes were significantly increased within in vitro differentiated HLCs on nanofibers at day 36. MSCs, early and late HLCs in both nano and nano+ culture conditions that were transplanted by an intravenous route caused a decrease in liver fibrosis when engrafted in the recipient liver and were able to differentiate into functional hepatocytes (ALB+), except for late HLCs in the nano group. Late HLCs transplanted in the nano+ group were more effective in rescuing liver failure, enhancing serum ALB, homing transplanted cells and undergoing functional engraftment than the other groups. These results showed that topographic properties of nanofibers enhance differentiation of HLCs from MSCs and maintain their function in long-term culture, which has implications for cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Sancho-Bru, P., Najimi, M., Caruso, M., et al. (2009). Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside? Gut, 58, 594–603.

    Article  CAS  PubMed  Google Scholar 

  2. Yan, Y., Xu, W., Qian, H., et al. (2009). Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver International, 29, 356–365.

    Article  CAS  PubMed  Google Scholar 

  3. Banas, A., Teratani, T., Yamamoto, Y., et al. (2009). Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. Journal of Gastroenterology and Hepatology, 24, 70–77.

    Article  CAS  PubMed  Google Scholar 

  4. Liang, L., Ma, T., Chen, W., et al. (2009). Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatology Research, 39, 822–832.

    Article  CAS  PubMed  Google Scholar 

  5. Kuo, T. K., Hung, S. P., Chuang, C. H., et al. (2008). Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 134, 2111–2121.

    Article  PubMed  Google Scholar 

  6. Russo, F. P., Alison, M. R., Bigger, B. W., et al. (2006). The bone marrow functionally contributes to liver fibrosis. Gastroenterology, 130, 1807–1821.

    Article  PubMed  Google Scholar 

  7. di Bonzo, L. V., Ferrero, I., Cravanzola, C., et al. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57, 223–231.

    Article  PubMed  Google Scholar 

  8. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.

    Article  CAS  PubMed  Google Scholar 

  9. Dalby, M. J., Gadegaard, N., Tare, R., et al. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6, 997–1003.

    Article  CAS  PubMed  Google Scholar 

  10. Baharvand, H., & Mehrjardi, N. Z. (2008). Nanotechnology in Stem Cell Biology and Technology. In: D. E. Reisner, J. D. Bronzino (Eds.), Bionanotechnology (pp. 1–23). Global Prospects Taylor & Francis, Inc.

  11. Brophy, C. M., Luebke-Wheeler, J. L., Amiot, B. P., Remmel, R. P., Rinaldo, P., & Nyberg, S. L. (2009). Gene expression and functional analyses of primary rat hepatocytes on nanofiber matrices. Cells Tissues Organs. doi:10.1159/000223235. Epub ahead of print.

    PubMed  Google Scholar 

  12. Schindler, M., Ahmed, I., Kamal, J., et al. (2005). A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials, 26, 5624–5631.

    Article  CAS  PubMed  Google Scholar 

  13. Eslaminejad, M. B., Nikmahzar, A., Taghiyar, L., Nadri, S., & Massumi, M. (2006). Murine mesenchymal stem cells isolated by low density primary culture system. Development, Growth & Differentiation, 48, 361–370.

    Article  CAS  Google Scholar 

  14. Lee, K. D., Kuo, T. K., Whang-Peng, J., et al. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40, 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  15. Page, J. L., Johnson, M. C., Olsavsky, K. M., Strom, S. C., Zarbl, H., & Omiecinski, C. J. (2007). Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicological Sciences, 97, 384–397.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz, R. E., Reyes, M., Koodie, L., et al. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. Journal of Clinical Investigation, 109, 1291–1302.

    CAS  PubMed  Google Scholar 

  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  18. Tzanakakis, E. S., Hsiao, C. C., Matsushita, T., Remmel, R. P., & Hu, W. S. (2001). Probing enhanced cytochrome P450 2B1/2 activity in rat hepatocyte spheroids through confocal laser scanning microscopy. Cell Transplantation, 10, 329–342.

    CAS  PubMed  Google Scholar 

  19. Figliuzzi, M., Cornolti, R., Perico, N., et al. (2009). Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplantation Proceedings, 41, 1797–1800.

    Article  CAS  PubMed  Google Scholar 

  20. Oyagi, S., Hirose, M., Kojima, M., et al. (2006). Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. Journal of Hepatology, 44, 742–748.

    Article  CAS  PubMed  Google Scholar 

  21. Sato, Y., Araki, H., Kato, J., et al. (2005). Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106, 756–763.

    Article  CAS  PubMed  Google Scholar 

  22. Cao, B. Q., Lin, J. Z., Zhong, Y. S., et al. (2007). Contribution of mononuclear bone marrow cells to carbon tetrachloride-induced liver fibrosis in rats. World J Gastroenterol., 13, 1851–1854. discussion 1854–1856.

    Article  CAS  PubMed  Google Scholar 

  23. Fang, H. L., Lai, J. J., Lin, W. L., & Lin, W. C. (2007). A fermented substance from Aspergillus phoenicis reduces liver fibrosis induced by carbon tetrachloride in rats. Bioscience, Biotechnology, and Biochemistry, 71, 1154–1161.

    Article  CAS  PubMed  Google Scholar 

  24. Arezzini, B., Lunghi, B., Lungarella, G., & Gardi, C. (2003). Iron overload enhances the development of experimental liver cirrhosis in mice. International Journal of Biochemistry and Cell Biology, 35, 486–495.

    Article  CAS  PubMed  Google Scholar 

  25. Marumoto, Y., Terai, S., Urata, Y., et al. (2008). Continuous high expression of XBP1 and GRP78 is important for the survival of bone marrow cells in CCl4-treated cirrhotic liver. Biochemical and Biophysical Research Communications, 367, 546–552.

    Article  CAS  PubMed  Google Scholar 

  26. Sakaida, I., Terai, S., Yamamoto, N., et al. (2004). Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology, 40, 1304–1311.

    Article  PubMed  Google Scholar 

  27. Terai, S., Sakaida, I., Yamamoto, N., et al. (2003). An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. Journal of Biochemistry, 134, 551–558.

    Article  CAS  PubMed  Google Scholar 

  28. Alison, M. R., Vig, P., Russo, F., et al. (2004). Hepatic stem cells: from inside and outside the liver? Cell Proliferation, 37, 1–21.

    Article  CAS  PubMed  Google Scholar 

  29. Baharvand, H., Hashemi, S. M., & Shahsavani, M. (2008). Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation, 76, 465–477.

    Article  CAS  PubMed  Google Scholar 

  30. Aurich, I., Mueller, L. P., Aurich, H., et al. (2007). Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut, 56, 405–415.

    Article  CAS  PubMed  Google Scholar 

  31. Aurich, H., Sgodda, M., Kaltwasser, P., et al. (2009). Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut, 58, 570–581.

    Article  CAS  PubMed  Google Scholar 

  32. Duncan, A. W., Dorrell, C., & Grompe, M. (2009). Stem cells and liver regeneration. Gastroenterology, 137, 466–481.

    Article  PubMed  Google Scholar 

  33. Abdel Aziz, M. T., Atta, H. M., Mahfouz, S., et al. (2007). Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 40, 893–899.

    Article  CAS  PubMed  Google Scholar 

  34. Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    Article  CAS  PubMed  Google Scholar 

  35. van Poll, D., Parekkadan, B., Cho, C. H., et al. (2008). Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 47, 1634–1643.

    Article  PubMed  Google Scholar 

  36. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  37. Parekkadan, B., van Poll, D., Suganuma, K., et al. (2007). Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE, 2, e941.

    Article  PubMed  Google Scholar 

  38. Wang, X., Willenbring, H., Akkari, Y., et al. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422, 897–901.

    Article  CAS  PubMed  Google Scholar 

  39. Camargo, F. D., Finegold, M., & Goodell, M. A. (2004). Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. Journal of Clinical Investigation, 113, 1266–1270.

    CAS  PubMed  Google Scholar 

  40. Jang, Y. Y., Collector, M. I., Baylin, S. B., Diehl, A. M., & Sharkis, S. J. (2004). Hematopoietic stem cells convert into liver cells within days without fusion. Nature Cell Biology, 6, 532–539.

    Article  CAS  PubMed  Google Scholar 

  41. Hashemi, S. M., Soleimani, M., Zargarian, S. S., et al. (2008). In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-Caprolactone) nanofiber scaffolds. Cells Tissues Organs, 190, 135–149.

    Article  PubMed  Google Scholar 

  42. Li, W. J., Tuli, R., Okafor, C., et al. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26, 599–609.

    Article  CAS  PubMed  Google Scholar 

  43. Silva, G. A., Czeisler, C., Niece, K. L., et al. (2004). Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 303, 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  44. Biehl, J. K., Yamanaka, S., Desai, T. A., Boheler, K. R., & Russell, B. (2009). Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography. Developmental Dynamics, 238, 1964–1973.

    Article  CAS  PubMed  Google Scholar 

  45. Chai, C., & Leong, K. W. (2007). Biomaterials approach to expand and direct differentiation of stem cells. Molecular Therapy, 15, 467–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Salmanyazdi, Dr. Gharavi, Miss Rabbani, Miss Azhdari, Mr. Pournasr, Mr. Nazarian, and Mr. Rahjouei for their critical comments and technical support. This study was funded by a grant from Royan Institute.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojtaba Rezazadeh Valojerdi or Hossein Baharvand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piryaei, A., Valojerdi, M.R., Shahsavani, M. et al. Differentiation of Bone Marrow-derived Mesenchymal Stem Cells into Hepatocyte-like Cells on Nanofibers and Their Transplantation into a Carbon Tetrachloride-Induced Liver Fibrosis Model. Stem Cell Rev and Rep 7, 103–118 (2011). https://doi.org/10.1007/s12015-010-9126-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9126-5

Keywords

Navigation