Skip to main content

Advertisement

Log in

Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Ami E, Berrih-Aknin S, Miller A (2011) Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 10:410–415

    Article  PubMed  CAS  Google Scholar 

  3. Bernacki SH, Wall ME, Loboa EG (2008) Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods Cell Biol 86:257–258

    Article  PubMed  CAS  Google Scholar 

  4. Black SP, Constantinidis I, Cui H, Tucker-Burden C, Weber CJ, Safley SA (2006) Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice. Biochem Biophys Res Commun 340:236

    Article  PubMed  CAS  Google Scholar 

  5. Chelluri LK, Kancherla R, Turlapati N, Vemuri S, Debnath T, Kumar P, Beevi SS, Kamaraju RS (2011) Improved differentiation protocol of rat bone marrow precursors to functional islet like cells. Stem Cell Stud 1:36–41

    Article  CAS  Google Scholar 

  6. Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 20:3016–3020

    Google Scholar 

  7. Defronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28:1092–1100

    Article  PubMed  CAS  Google Scholar 

  8. Froud T, Ricordi C, Baidal AD, Hafiz MM, Ponte G, Cure P, Pileggi A, Poggioli R, Ichii H, Khan A, Ferreira JV, Pugliese A, Esquenazi VV, Kenyon NS, Alejandro R (2005) Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant 5:2037–2046

    Article  PubMed  Google Scholar 

  9. Gao F, Wu DQ, Hu YH, Jin GX, Li GD, Sun TW, Li FJ (2008) In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl Res 151:293–302

    Article  PubMed  CAS  Google Scholar 

  10. Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427

    Article  PubMed  CAS  Google Scholar 

  11. Hernández RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  PubMed  Google Scholar 

  12. Jones PM, Courtney ML, Burns CJ, Persaud SJ (2008) Cell-based treatments for diabetes. Drug Discov Today 13:888–893

    Article  PubMed  CAS  Google Scholar 

  13. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6:435–441

    Article  PubMed  CAS  Google Scholar 

  14. Labriola L, Montor WR, Krogh K, Lojudice FH, Genzini T, Goldberg AC, Eliaschewitz FG, Sogayar MC (2007) Beneficial effects of prolactin and laminin on human pancreatic islet-cell cultures. Mol Cell Endocrinol 263:120–133

    Article  PubMed  CAS  Google Scholar 

  15. Lee J, Han DJ, Kim SC (2008) In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 375:547–551

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Li F, Qi H, Feng G, Yuan K, Deng H, Zhou H (2008) Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev 17:815–824

    Article  PubMed  CAS  Google Scholar 

  17. Limbert C, Seufert J (2009) In vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr Diabetes 10:413–419

    Article  PubMed  Google Scholar 

  18. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617

    Article  PubMed  CAS  Google Scholar 

  19. Otto TC, Daniel LMD (2005) Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40:229–242

    Article  PubMed  CAS  Google Scholar 

  20. Patel SA, Sherman L, Munoz J, Rameshwar P (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp 56:1–8

    Article  CAS  Google Scholar 

  21. Robertson RP (2004) Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med 350:694–705

    Article  PubMed  CAS  Google Scholar 

  22. Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, Calne RY, Soria B (2005) Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transplant Immunol 15:113–129

    Article  CAS  Google Scholar 

  23. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  24. Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20:284–292

    Article  PubMed  CAS  Google Scholar 

  25. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  PubMed  CAS  Google Scholar 

  26. Sun Y, Chen L, Hou XG, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 120:771–776

    CAS  Google Scholar 

  27. Taha MF, Hedayati V (2010) Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue and Cell 42:211–216

    Article  PubMed  CAS  Google Scholar 

  28. Taléns-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gómez-Lechón MJ (2007) Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro 21:324–329

    Article  PubMed  Google Scholar 

  29. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Müller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135–1140

    Article  PubMed  CAS  Google Scholar 

  30. Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, Guiducci S, Jones S, Jorgensen C, Le Blanc K, Luyten F, McGonagle D, Martin I, Bocelli-Tyndall C, Pennesi G, Pistoia V, Pitzalis C, Uccelli A, Wulffraat N, Feldmann M (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 9:301–310

    Article  PubMed  Google Scholar 

  31. Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A, Verrecchia F, Larghero J (2009) Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 35:85–93

    Article  PubMed  CAS  Google Scholar 

  32. Wang N, Adams G, Buttery L, Falcone FH, Stolnik S (2009) Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol 144:304–312

    Article  PubMed  CAS  Google Scholar 

  33. Wu XH, Liu CP, Xu KF, Mao XD, Zhu J, Jiang JJ, Cui D, Zhang M, Xu Y, Liu C (2007) Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 13:3342–3349

    PubMed  CAS  Google Scholar 

  34. Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both b-cell replication and neogenesis, resulting in increased b-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2275

    Article  PubMed  CAS  Google Scholar 

  35. Zhang YH, Wang HF, Liu W, Bing LJ, Gao YM (2009) Insulin-producing cells derived from rat bone marrow and their autologous transplantation in the duodenal wall for treating diabetes. Anat Rec (Hoboken) 292:728–735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of stem cells laboratory of Razi drug research center and cellular and molecular research center, for their technical assistance. This work was financially supported by research council of the Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Sharifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshtagh, P.R., Emami, S.H. & Sharifi, A.M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem 69, 451–458 (2013). https://doi.org/10.1007/s13105-012-0228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0228-1

Keywords

Navigation