Skip to main content
Log in

Comparative Evaluation of Cardiac Markers in Differentiated Cells from Menstrual Blood and Bone Marrow-Derived Stem Cells In Vitro

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, menstrual blood-derived stem cells (MenSCs) have been introduced as easily accessible and refreshing stem cell source without ethical considerations in the field of regenerative medicine. The aim of this study was to investigate in vitro cardiac differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under two protocols using 5-aza-2′-deoxycytidine (5-aza) and basic fibroblast growth factor (bFGF). Our data revealed that differentiated MenSCs and BMSCs acquired some features of cardiomyocytes; however, degree of differentiation was dependent on the protocol. In a similar manner with BMSCs, differentiated MenSCs showed upper levels of mRNA/protein of late-stage cardiac markers under 5-aza stimulation and continuous treatment with bFGF (protocol 2) compared to those induced by 5-aza alone (protocol 1) evidencing the key role of bFGF in cardiac development of stem cells. Compared to corresponding undifferentiated cells differentiated MenSCs under protocol 2 showed remarkable expression of connexin-43 and TNNT2 at both gene and protein levels, whereas developed BMSCs under the same condition only expressed connextin-43 at the higher level. Superiority of protocol 2 over protocol 1 was confirmed by assessment of LDH and cTnI production by differentiated cells. Based on the accumulative data, our study provided convincing evidence that MenSCs have relatively higher capability to be differentiated toward cardiomyocyte compared with BMSCs. Furthermore, usage of bFGF and 5-aza to induce in vitro cardiac differentiation of MenSCs is highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, R. K., Jia, Z. Q., Weisel, R. D., et al. (1996). Cardiomyocyte transplantation improves heart function. Annals of Thoracic Surgery, 62, 654–660.

    Article  CAS  Google Scholar 

  2. Eriksson, H. (1995). Heart failure: A growing public health problem. Journal of Internal Medicine, 237, 135–141.

    Article  CAS  Google Scholar 

  3. Snykers, S., De Kock, J., Rogiers, V., et al. (2009). In vitro differentiation of embryonic and adult stem cells into cardiomyocyte: State of the art. Stem Cells, 27, 60–577.

    Article  Google Scholar 

  4. Henningson, C. T, Jr, Stanislaus, M. A., & Gewirtz, A. M. (2003). Embryonic and adult stem cell therapy. Journal of Allergy and Clinic Immunology, 111, 745–753.

    Article  Google Scholar 

  5. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

    Article  CAS  Google Scholar 

  6. Meng, X., Ichim, T. E., Zhong, J., et al. (2007). Endometrial regenerative cells: a novel stem cell population. Journal of Translational Medicine, 5, 57–66.

    Article  CAS  Google Scholar 

  7. Patel, A. N., Park, E., Kuzman, M., et al. (2008). Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation. Cell Transplantation, 17, 303–311.

    Article  Google Scholar 

  8. Musina, R. A., Belyavski, A. V., Tarusova, O. V., et al. (2008). Endometrial mesenchymal stem cells isolated from the menstrual blood. Bulletin of Experimental Biology and Medicine, 145, 539–543.

    Article  CAS  Google Scholar 

  9. Darzi, S., Zarnani, A. H., Jeddi-Tehrani, M., et al. (2012). Osteogenic differentiation of stem cells derived from menstrual blood versus bone marrow in the presence of human platelet releasate. Tissue Engineering Part A, 18, 1720–1728.

    Article  CAS  Google Scholar 

  10. Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., et al. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless of the site of injection. Stem Cells, 28, 1568–1570.

    Article  Google Scholar 

  11. Nikoo, S., Ebtekar, M., Jeddi-Tehrani, M., et al. (2012). Effect of menstrual blood derived stromal stem cells on proliferative capacity of peripheral blood mononuclear cells in allogeneic mixed lymphocyte reaction. Journal of Obstetrics Gynaecology Research, 38, 804–809.

    Article  CAS  Google Scholar 

  12. Khanjani, S., Khanmohammadi, M., Zarnani, A. H., et al. (2014). Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow- derived stem cells into hepatocyte-like cells. PLoS One., 9e, 86075.

    Article  Google Scholar 

  13. Li, Y., Li, X., Zhao, H., et al. (2013). Efficient induction of pluripotent stem cells from menstrual blood. Stem Cells and Development, 22(7), 1147–1158.

  14. Hida, N., Nishiyama, N., Miyoshi, S., et al. (2008). Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells, 26, 1695–1704.

    Article  CAS  Google Scholar 

  15. Azedi, F., Kazemnejad, S., Zarnani A. H., et al. (2014). Differentiation potential of menstrual blood- versus bone marrow- stem cells into glial-like cells. Cell Biology International, 38(5), 615–624.

  16. Khanmohammadi, M., Khanjani, S., Bakhtyari, M. S., et al. (2012). Proliferation and chondrogenic differentiation potential of menstrual blood-and bone marrow-derived stem cells in two-dimensional culture. International Journal of Hematology, 95, 484–493.

    Article  Google Scholar 

  17. Mackenzie, T. C., & Flake, A. W. (2001). Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy, 3, 403–405.

    Article  CAS  Google Scholar 

  18. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103, 697–705.

    Article  CAS  Google Scholar 

  19. Singla, D. K., & Sobel, B. E. (2005). Enhancement by growth factors of cardiac myocyte differentiation from embryonic stem cells:a promising foundation for cardiac regeneration. Biochemical and Biophysical Research Communication, 335, 637–642.

    Article  CAS  Google Scholar 

  20. Martin, B. M. (1994). Tissue culture techniques (p. 247). Boston, MA: Springer.

    Book  Google Scholar 

  21. Xu, W., Zhang, X., Qian, H., et al. (2004). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental Biology and Medicine, 229, 623–631.

    CAS  Google Scholar 

  22. Zhou, L., Liu, Y., Lu, L., et al. (2012). Cardiac gene activation analysis in mammalian non-myoblasic cells by Nk2–5, Tbx5, Gata4 and Myocd. PLoS One, 7e, 48028.

    Article  Google Scholar 

  23. Efe, J. A., Hilcove, S., Kim, J., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–223.

    Article  CAS  Google Scholar 

  24. Ruijter, J. M., Ramakers, C., Hoogaars, W. M., et al. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, e45.

    Article  CAS  Google Scholar 

  25. Pasupathi, P., Rao, Y. Y., Farook, J., et al. (2009). Biochemical cardiac markers in clinical cardiology. Journal of Medicine, 10, 100–108.

    Article  Google Scholar 

  26. Lewandrowski, K., Chen, A., & Januzzi, J. (2002). Cardiac markers for myocardial infarction. American Journal of Clinical Pathology, 118, S93–S99.

    Article  Google Scholar 

  27. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 1(30), e36.

    Article  Google Scholar 

  28. Fraser, J. K., Schreiber, R. E., Zuk, P. A., et al. (2004). Adult stem cell therapy for the heart. International Journal of Biochemistry & Cell Biology, 36, 658–666.

    Article  CAS  Google Scholar 

  29. Amado, L. C., Saliaris, A. P., Schuleri, K. H., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  CAS  Google Scholar 

  30. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 41, 0701–0705.

    Article  Google Scholar 

  31. Sethe, S., Scutt, A., & Stolzing, A. (2006). Aging of mesenchymal stem cells. Ageing Research Reviews, 5, 91–116.

    Article  CAS  Google Scholar 

  32. Martin-Rendon, E., Sweeney, D., Lu, F., et al. (2008). 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis, 95, 137–148.

    Article  CAS  Google Scholar 

  33. Allickson, J. G., Sanchez, A., Yefimenko, N., et al. (2011). Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. The Open Stem Cell Journal, 3, 4–10.

    Article  Google Scholar 

  34. Cui, C. H., Uyama, T., Miyado, K., et al. (2007). Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Molecular Biology of the Cell, 18, 1586–1594.

    Article  CAS  Google Scholar 

  35. Borlongan, C. V., Kaneko, Y., Maki, M., et al. (2010). Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells, 19, 439–452.

    Article  CAS  Google Scholar 

  36. Zhang, Y., Chu, Y., Shen, W., et al. (2009). Effect of 5-azacytidine induction duration on differentiation of human first-trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells. Interactive CardioVascular and Thoracic Surgery, 9, 943–946.

    Article  Google Scholar 

  37. Hahn, J. Y., Cho, H. J., Kang, H. J., et al. (2008). Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 51, 933–943.

    Article  CAS  Google Scholar 

  38. Wang, T., Xu, Z., Jiang, W., et al. (2006). Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. International Journal of Cardiology, 109, 74–81.

    Article  Google Scholar 

  39. Zaffran, S., & Frasch, M. (2002). Early signals in cardiac development. Circulation Research, 91, 457–469.

    Article  CAS  Google Scholar 

  40. Supokawej, A., Kheolamai, P., Nartprayut, K., et al. (2013). Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment. Turkish Journal of Haematology, 30, 115–121.

    Article  Google Scholar 

  41. Rosenblatt-Velin, N., Lepore, M. G., Cartoni, C., et al. (2005). FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. Journal of Clinical Investigation., 115, 1724–1733.

    Article  CAS  Google Scholar 

  42. Doble, B. W., & Kardami, E. (1995). Basic fibroblast growth factor stimulates connexin-43 expression and intercellular communication of cardiac fibroblasts. Molecular Celular Biochemistry, 14, 381–387.

    Google Scholar 

  43. Keren-Politansky, A., Keren, A., & Bengal, E. (2009). Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/CREB pathway. Development Biology, 335, 374–384.

    Article  CAS  Google Scholar 

  44. Barron, M., Gao, M., & Lough, J. (2000). Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm specific, transient, and cooperative. Developmental Dynamics, 21, 383–393.

    Article  Google Scholar 

  45. Yang, J., Song, T., Wu, P., et al. (2012). Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node—like cells. Molecular Medicine Reports, 5, 108–113.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from Iranian Stem Cell Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir-Hassan Zarnani or Somaieh Kazemnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M., Zarnani, AH., Mohseni-Kouchesfehani, H. et al. Comparative Evaluation of Cardiac Markers in Differentiated Cells from Menstrual Blood and Bone Marrow-Derived Stem Cells In Vitro. Mol Biotechnol 56, 1151–1162 (2014). https://doi.org/10.1007/s12033-014-9795-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9795-4

Keywords

Navigation