Skip to main content
Log in

High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2013

Abstract

Transplantation of stem cells using biodegradable and biocompatible nanofibrous scaffolds is a promising therapeutic approach for treating inherited retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. In this study, conjunctiva mesenchymal stem cells (CJMSCs) were seeded onto poly-l-lactic acid (PLLA) nanofibrous scaffolds and were induced to differentiate toward photoreceptor cell lineages. Furthermore, the effects of orientation of scaffold on photoreceptor differentiation were examined. Scanning electron microscopy (SEM) imaging, quantitative real time RT-PCR (qPCR) and immunocytochemistry were used to analyze differentiated cells and their expression of photoreceptor-specific genes. Our observations demonstrated the differentiation of CJMSCs to photoreceptor cells on nanofibrous scaffolds and suggested their potential application in retinal regeneration. SEM imaging showed that CJMSCs were spindle shaped and well oriented on the aligned nanofiber scaffolds. The expression of rod photoreceptor-specific genes was significantly higher in CJMSCs differentiated on randomly-oriented nanofibers compared to those on aligned nanofibers. According to our results we may conclude that the nanofibrous PLLA scaffold reported herein could be used as a potential cell carrier for retinal tissue engineering and a combination of electrospun nanofiber scaffolds and MSC-derived conjunctiva stromal cells may have potential application in retinal regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Margalit E, Sadda SR (2003) Retinal and optic nerve diseases. Artif Organs 27(11):963–974

    Article  PubMed  Google Scholar 

  2. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45(11):4167–4173

    Article  PubMed  Google Scholar 

  3. Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Langer R, Young MJ (2009) Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30(20):3405–3414

    Article  PubMed  CAS  Google Scholar 

  4. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287(5460):2032–2036

    Article  PubMed  CAS  Google Scholar 

  5. Kwan AS, Wang S, Lund RD (1999) Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Exp Neurol 159(1):21–33

    Article  PubMed  CAS  Google Scholar 

  6. Wang S, Lu B, Girman S, Holmes T, Bischoff N, Lund RD (2008) Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest Ophthalmol Vis Sci 49(1):416–421

    Article  PubMed  Google Scholar 

  7. Silverman MS, Hughes SE (1989) Photoreceptor transplantation in inherited and environmentally induced retinal degeneration: anatomy, immunohistochemistry and function. Prog Clin Biol Res 314:687–704

    PubMed  CAS  Google Scholar 

  8. Sagdullaev BT, Aramant RB, Seiler MJ, Woch G, McCall MA (2003) Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44(4):1686–1695

    Article  PubMed  Google Scholar 

  9. Kicic A, Shen WY, Wilson AS, Constable IJ, Robertson T, Rakoczy PE (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23(21):7742–7749

    PubMed  CAS  Google Scholar 

  10. Aramant RB, Seiler MJ, Ball SL (1999) Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium. Invest Ophthalmol Vis Sci 40(7):1557–1564

    PubMed  CAS  Google Scholar 

  11. Seiler MJ, Aramant RB, Bergstrom A (1995) Co-transplantation of embryonic retina and retinal pigment epithelial cells to rabbit retina. Curr Eye Res 14(3):199–207

    Article  PubMed  CAS  Google Scholar 

  12. Gouras P, Flood MT, Kjedbye H, Bilek MK, Eggers H (1985) Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr Eye Res 4(3):253–265

    Article  PubMed  CAS  Google Scholar 

  13. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F, Goluboff E (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 30(3):586–588

    PubMed  CAS  Google Scholar 

  14. Nadri S, Soleimani M, Kiani J, Atashi A, Izadpanah R (2008) Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation 76(3):223–231

    Article  PubMed  CAS  Google Scholar 

  15. Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ (2005) Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23(10):1579–1588

    Article  PubMed  Google Scholar 

  16. Tezel TH, Del Priore LV (1997) Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 235(1):41–47

    Article  PubMed  CAS  Google Scholar 

  17. Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ, Langer R (2008) A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29(4):418–426

    Article  PubMed  CAS  Google Scholar 

  18. Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ (2005) Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 26(16):3187–3196

    Article  PubMed  CAS  Google Scholar 

  19. Steedman MR, Tao SL, Klassen H, Desai TA (2010) Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed Microdevices 12(3):363–369

    Article  PubMed  Google Scholar 

  20. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  PubMed  CAS  Google Scholar 

  21. Dosunmu OO, Chase GG, Kataphinan W, Reneker DH (2006) Electrospinning of polymer nano fibres from multiple jets on a porous tubular surface. Nanotechnology 17(4):1123–1127

    Article  PubMed  CAS  Google Scholar 

  22. Mohammadi Y, Soleimani M, Fallahi-Sichani M, Gazme A, Haddadi-Asl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N (2007) Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs 30(3):204–211

    PubMed  CAS  Google Scholar 

  23. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  Google Scholar 

  24. Cong L, Sun D, Zhang Z, Jiao W, Rizzolo LJ, Peng S (2008) A novel rabbit model for studying RPE transplantation. Invest Ophthalmol Vis Sci 49(9):4115–4125

    Article  PubMed  Google Scholar 

  25. Tomita M, Mori T, Maruyama K, Zahir T, Ward M, Umezawa A, Young MJ (2006) A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 24(10):2270–2278

    Article  PubMed  CAS  Google Scholar 

  26. Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270(2):517–521

    Article  PubMed  CAS  Google Scholar 

  27. Sharma RK, Netland PA (2007) Early born lineage of retinal neurons express class III beta-tubulin isotype. Brain Res 1176:11–17

    Article  PubMed  CAS  Google Scholar 

  28. Zhao S, Rizzolo LJ, Barnstable CJ (1997) Differentiation and transdifferentiation of the retinal pigment epithelium. Int Rev Cytol 171:225–266

    Article  PubMed  CAS  Google Scholar 

  29. Milam AH, Dacey DM, Dizhoor AM (1993) Recoverin immunoreactivity in mammalian cone bipolar cells. Vis Neurosci 10(1):1–12

    Article  PubMed  CAS  Google Scholar 

  30. Gu P, Yang J, Wang J, Young MJ, Klassen H (2009) Sequential changes in the gene expression profile of murine retinal progenitor cells during the induction of differentiation. Mol Vis 15:2111–2122

    PubMed  CAS  Google Scholar 

  31. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295(2):395–406

    Article  PubMed  CAS  Google Scholar 

  32. Nadri S, Soleimani M (2007) Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev Biol Anim 43(8–9):276–282

    Article  PubMed  CAS  Google Scholar 

  33. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  PubMed  CAS  Google Scholar 

  34. Greferath U, Grunert U, Wassle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301(3):433–442

    Article  PubMed  CAS  Google Scholar 

  35. Livesey FJ, Young TL, Cepko CL (2004) An analysis of the gene expression program of mammalian neural progenitor cells. Proc Natl Acad Sci USA 101(5):1374–1379

    Article  PubMed  CAS  Google Scholar 

  36. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886

    Article  PubMed  CAS  Google Scholar 

  37. Chang EJ, Kim HH, Huh JE, Kim IA, Seung Ko J, Chung CP, Kim HM (2005) Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling. Exp Cell Res 303(1):197–206

    PubMed  CAS  Google Scholar 

  38. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    Article  PubMed  Google Scholar 

  39. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28(19):3012–3025

    Article  PubMed  CAS  Google Scholar 

  40. Bockelmann J, Klinkhammer K, von Holst A, Seiler N, Faissner A, Brook GA, Klee D, Mey J (2011) Functionalization of electrospun poly(epsilon-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of schwann cell migration and axonal growth. Tissue Eng Part A 17(3–4):475–486

    Article  PubMed  CAS  Google Scholar 

  41. Soleimani M, Nadri S, Shabani I (2010) Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Int J Dev Biol 54(8–9):1295–1300

    Article  PubMed  CAS  Google Scholar 

  42. Bhang SH, Lim JS, Choi CY, Kwon YK, Kim BS (2007) The behavior of neural stem cells on biodegradable synthetic polymers. J Biomater Sci Polym Ed 18(2):223–239

    Article  PubMed  CAS  Google Scholar 

  43. Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60(2):199–214

    Article  PubMed  CAS  Google Scholar 

  44. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900

    Article  PubMed  CAS  Google Scholar 

  45. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to manager of Stem Cell Technology Research Center. This article is withdrawn from a Ph.D course.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahram Kazemi or Masoud Soleimani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_2360_MOESM1_ESM.jpg

Supplementary Fig. 1. Morphological characteristics and in vitro differentiation of conjunctiva stromal fibroblast-like cells into mesenchymal lineages: (A) conjunctiva stromal cells (passage 5) have differentiated into (B) mineralizing cells stained with alizarin red (C) Adipocytes stained with Oil red O, chondrocytic lineage stained with Alcian blue (D). (Magnification = ×20). (JPEG 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadri, S., Kazemi, B., Eeslaminejad, M.B. et al. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep 40, 3883–3890 (2013). https://doi.org/10.1007/s11033-012-2360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2360-y

Keywords

Navigation