Skip to main content

Advertisement

Log in

Hydroxyapatite materials-synthesis routes, mechanical behavior, theoretical insights, and artificial intelligence models: a review

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Over the years, hydroxyapatite (HAp) has been a well-researched biomaterial because of its bioactive and biocompatible properties with remarkable applications for bone tissue engineering. The robust structure of HAp allows for a host of applications in biomedicine. HAp is enriched in calcium and phosphate, can be sourced from synthetic or natural precursors with significant characteristics notable of biomaterials, and can be produced by facile protocols for clinical use. Nonetheless, HAp prepared from natural or synthetic sources are different due to the conditions of processing. One of the factors in this direction and for the high performance of bioceramics in biomedicine is a robust mechanical strength that prevents failure of the HAp scaffolds. Stemming from these, and of particular interest, is the porosity of the HAp-derived scaffolds that plays a major role in the mechanical properties in vitro and in vivo. Many reports have it that there are reduced mechanical properties vis-à-vis the inherent high porosity of the scaffolds, and these must be balanced in line with the degradation rate of the scaffolds. Gradients in pore sizes and crack propagation tendencies are important to lead to new production methods with the potential to generate scaffolds with morphological and mechanical properties designed to meet bone repair needs. Nowadays, validating mechanical and materials engineering properties with the aid of atomistic simulations using density functional theory (DFT) and artificial intelligence (AI), and the complement of experimental studies, is gradually becoming an important research domain within the scientific community. The importance of these theoretical and AI methods can be ascribed to the comprehension of the non-linear relationship between some measured properties using experimental datasets. Hence, this review explores a re-cap and the state of knowledge regarding sustainable natural sources of HAp, data on mechanical property measurements, the link between porosity and mechanical properties of HAp-derived materials for bone tissue engineering, a relatively new method for characterizing the mechanical behavior of HAp, computational trends in biomaterials research, and recent trends on the biomedical applicability of HAp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AE:

Acoustic emission

ANN:

Artificial neural network

BET:

Brunauer-Emmett-Teller

c-HAp:

Chemically synthesized hydroxyapatite

Ca/P:

Calcium to phosphate ratio

CPS:

Conventional pressureless sintering

DCS:

Differential centrifugal sedimentation

DFT:

Density functional theory

DL:

Deep learning

DLS:

Dynamic light scattering

EBSD:

Electron backscatter diffraction

EDS:

Energy-dispersive X-ray spectrometry

EDTA:

Ethylenediaminetetraacetic acid

FAp:

Fluorapatite

FTIR:

Fourier transform infrared spectroscopy

GLM:

Generalized linear model

HAp:

Hydroxyapatite

HA/SA/CS:

Hydroxyapatite/sodium alginate/chitosan

HPS:

Hot press sintering

HR-TEM:

High resolution transmission electron microscopy

ICP-MS:

Inductively coupled plasma mass spectrometry

MLP:

Multilayer perceptron

MPa:

Megapascals

MS:

Microwave sintering

NHAp:

Natural hydroxyapatite

nHAp:

Nano hydroxyapatite

PL:

Photoluminescence spectroscopy

PVA:

Polyvinyl alcohol

SAXS:

Small angle X-ray scattering

SCS:

Solution combustion synthesis

SEM:

Scanning electron microscopy

SIMS:

Secondary-ion mass spectrometry

SPS:

Spark plasma sintering

STEM:

Scanning transmission electron microscopy (STEM)

TCP:

Tricalcium phosphate

TTCP:

Tetra-calcium phosphate

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TSS:

Two-step sintering

UTM:

Universal testing machine

UV-Vis:

Ultraviolet-visible spectrophotometry

VIF:

Vickers indentation fracture

XAS:

X-ray absorption spectroscopy

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

β-TCP:

Beta tricalcium phosphate.

References

  1. Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 249, 321–330 (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  CAS  Google Scholar 

  2. Dorozhkin, S.V.: Multiphasic calcium orthophosphate (CaPO 4 ) bioceramics and their biomedical applications. Ceram. Int. 42, 6529–6554 (2016). https://doi.org/10.1016/j.ceramint.2016.01.062

    Article  CAS  Google Scholar 

  3. De Groot, K.: Bioceramics consisting of calcium phosphate salts. Biomaterials. 1, 47–50 (1980)

    Article  Google Scholar 

  4. Kim, I.Y., Ohtsuki, C.: Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: effects of processing temperature. Ceram. Int. 42, 1886–1890 (2016). https://doi.org/10.1016/j.ceramint.2015.09.156

    Article  CAS  Google Scholar 

  5. Adeogun, A.I., Ofudje, A.E., Idowu, M.A., Kareem, S.O.: Facile development of nano size calcium hydroxyapatite based ceramic from eggshells: synthesis and characterization. Waste and Biomass Valorization. 9, 1469–1473 (2018). https://doi.org/10.1007/s12649-017-9891-3

    Article  CAS  Google Scholar 

  6. LeGeros, R.Z.: Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395, 81–98 (2002). https://doi.org/10.1097/00003086-200202000-00009

    Article  Google Scholar 

  7. Bahrololoom, M.E., Javidi, M., Javadpour, S., Ma, J.: Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J. Ceram. Process. Res. 10, 129–138 (2009)

    Google Scholar 

  8. Piccirillo, C., Silva, M.F., Pullar, R.C., Braga da Cruz, I., Jorge, R., Pintado, M.M.E., Castro, P.M.L.: Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C. 33, 103–110 (2013). https://doi.org/10.1016/j.msec.2012.08.014

    Article  CAS  Google Scholar 

  9. Manjubala, I., Sivakumar, M., Sampath Kumar, T.S., Panduranga Rao, K.: Synthesis and characterization of functional gradient materials using Indian corals. J. Mater. Sci. Mater. Med. 11, 705–709 (2000). https://doi.org/10.1023/A:1008915510976

    Article  CAS  Google Scholar 

  10. Rivera, E.M., Araiza, M., Brostow, W., Castaño, V.M., Dıaz-Estrada, J.R., Hernández, R., Rodrıguez, J.R.: Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128–134 (1999). https://doi.org/10.1016/S0167-577X(99)00118-4

    Article  CAS  Google Scholar 

  11. Dupoirieux, L., Neves, M., Pourquier, D.: Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: an experimental study. J. Oral Maxillofac. Surg. 58, 40–46 (2000). https://doi.org/10.1016/S0278-2391(00)80013-0

    Article  CAS  Google Scholar 

  12. Krishna, D.S.R., Siddharthan, A., Seshadri, S.K., Kumar, T.S.S.: A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J. Mater. Sci. Mater. Med. 18, 1735–1743 (2007). https://doi.org/10.1007/s10856-007-3069-7

    Article  CAS  Google Scholar 

  13. Gutowska, I., Machoy, Z., Machaliński, B.: The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the HyperChem software. J. Biomed. Mater. Res. Part A. 75A, 788–793 (2005). https://doi.org/10.1002/jbm.a.30511

    Article  CAS  Google Scholar 

  14. Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014). https://doi.org/10.1007/s10853-013-7864-x

    Article  CAS  Google Scholar 

  15. Sakka, S., Bouaziz, J., Ben, F.: Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. Adv. Biomater. Sci. Biomed. Appl. 27, 23–50 (2013). https://doi.org/10.5772/53088

    Article  CAS  Google Scholar 

  16. LeGeros, R.Z.: Calcium phosphate-based osteoinductive materials. Chem. Rev. 108, 4742–4753 (2008). https://doi.org/10.1021/cr800427g

    Article  CAS  Google Scholar 

  17. Lee, S.J., Oh, S.H.: Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid. Mater. Lett. 57, 4570–4574 (2003). https://doi.org/10.1016/S0167-577X(03)00363-X

    Article  CAS  Google Scholar 

  18. Osuchukwu, O., Salihi, A., Abdullahi, I., Obada, D.: Synthesis and characterization of sol–gel derived hydroxyapatite from a novel mix of two natural biowastes and their potentials for biomedical applications. Mater. Today Proc. 62, 4182–4187 (2022). https://doi.org/10.1016/j.matpr.2022.04.696

    Article  CAS  Google Scholar 

  19. Zhang, Y., Yin, Q.-S., Zhang, Y., Xia, H., Ai, F.-Z., Jiao, Y.-P., Chen, X.-Q.: Determination of antibacterial properties and cytocompatibility of silver-loaded coral hydroxyapatite. J. Mater. Sci. Mater. Med. 21, 2453–2462 (2010). https://doi.org/10.1007/s10856-010-4101-x

    Article  CAS  Google Scholar 

  20. Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N.: Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater. 35, 70–76 (2014). https://doi.org/10.1016/j.jmbbm.2014.03.004

    Article  CAS  Google Scholar 

  21. Heidari, F., Razavi, M., Ghaedi, M., Forooghi, M., Tahriri, M., Tayebi, L.: Investigation of mechanical properties of natural hydroxyapatite samples prepared by cold isostatic pressing method. J. Alloys Compd. 693, 1150–1156 (2017). https://doi.org/10.1016/j.jallcom.2016.10.081

    Article  CAS  Google Scholar 

  22. Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Krishnasamy, S., Bang, L.T., Sarhan, A.A.D.: Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram. Int. 44, 10525–10530 (2018). https://doi.org/10.1016/j.ceramint.2018.03.072

    Article  CAS  Google Scholar 

  23. Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F.N., Ferreira, J.M.F.: Scaffolds for bone restoration from cuttlefish. Bone. 37, 850–857 (2005). https://doi.org/10.1016/j.bone.2005.06.018

    Article  CAS  Google Scholar 

  24. Macha, I., Cazalbou, S., Ben-Nissan, B., Harvey, K., Milthorpe, B.: Marine structure derived calcium phosphate–polymer biocomposites for local antibiotic delivery. Mar. Drugs. 13, 666–680 (2015). https://doi.org/10.3390/md13010666

    Article  CAS  Google Scholar 

  25. Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J. Sol-Gel Sci. Technol. 37, 111–115 (2006). https://doi.org/10.1007/s10971-006-6428-9

    Article  CAS  Google Scholar 

  26. Lemos, A.F., Rocha, J.H.G., Quaresma, S.S.F., Kannan, S., Oktar, F.N., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc. 26, 3639–3646 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.011

    Article  CAS  Google Scholar 

  27. Landi, E., Celotti, G., Logroscino, G., Tampieri, A.: Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 23, 2931–2937 (2003). https://doi.org/10.1016/S0955-2219(03)00304-2

    Article  CAS  Google Scholar 

  28. Ślósarczyk, A., Paszkiewicz, Z., Zima, A.: The effect of phosphate source on the sintering of carbonate substituted hydroxyapatite. Ceram. Int. 36, 577–582 (2010). https://doi.org/10.1016/j.ceramint.2009.09.032

    Article  CAS  Google Scholar 

  29. Tadic, D., Beckmann, F., Schwarz, K., Epple, M.: A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials. 25, 3335–3340 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.007

    Article  CAS  Google Scholar 

  30. Mostafa, N.Y.: Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 94, 333–341 (2005). https://doi.org/10.1016/j.matchemphys.2005.05.011

    Article  CAS  Google Scholar 

  31. Lü, X.Y., Bin Fan, Y., Gu, D., Cui, W.: Preparation and characterization of natural hydroxyapatite from animal hard tissues. in. 213–216 (2007). https://doi.org/10.4028/0-87849-436-7.213

  32. Balázsi, C., Wéber, F., Kövér, Z., Horváth, E., Németh, C.: Preparation of calcium–phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 27, 1601–1606 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.016

    Article  CAS  Google Scholar 

  33. Acevedo-Dávila, J.L., López-Cuevas, J., Vargas-Gutiérrez, G., Rendón-Angeles, J.C., Méndez-Nonell, J.: Síntesis química de carbonato-hidroxiapatita similar al hueso a partir de cascarón de huevo de gallina y su caracterización, Boletín La Soc. Española Cerámica y Vidr. 46, 225–231 (2007). https://doi.org/10.3989/cyv.2007.v46.i5.223

    Article  Google Scholar 

  34. Vecchio, K.S., Zhang, X., Massie, J.B., Wang, M., Kim, C.W.: Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 3, 910–918 (2007). https://doi.org/10.1016/j.actbio.2007.06.003

    Article  CAS  Google Scholar 

  35. Ramesh, S., Natasha, A.N., Tan, C.Y., Bang, L.T., Ramesh, S., Ching, C.Y., Chandran, H.: Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 42, 7824–7829 (2016). https://doi.org/10.1016/j.ceramint.2016.02.015

    Article  CAS  Google Scholar 

  36. Ayatollahi, M.R., Yahya, M.Y., Asgharzadeh Shirazi, H., Hassan, S.A.: Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceram. Int. 41, 10818–10827 (2015). https://doi.org/10.1016/j.ceramint.2015.05.021

    Article  CAS  Google Scholar 

  37. Sasikumar, S., Vijayaraghavan, R.: Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method, Trends Biomater. Artif. Organs. 19, 70–73 (2006)

    Google Scholar 

  38. Sanosh, K.P., Chu, M.-C., Balakrishnan, A., Kim, T.N., Cho, S.-J.: Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Mater. Lett. 63, 2100–2102 (2009). https://doi.org/10.1016/j.matlet.2009.06.062

    Article  CAS  Google Scholar 

  39. Gergely, G., Wéber, F., Lukács, I., Tóth, A.L., Horváth, Z.E., Mihály, J., Balázsi, C.: Preparation and characterization of hydroxyapatite from eggshell. Ceram. Int. 36, 803–806 (2010). https://doi.org/10.1016/j.ceramint.2009.09.020

    Article  CAS  Google Scholar 

  40. Kumar, G.S., Thamizhavel, A., Girija, E.K.: Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater. Lett. 76, 198–200 (2012). https://doi.org/10.1016/j.matlet.2012.02.106

    Article  CAS  Google Scholar 

  41. Wu, S.-C., Tsou, H.-K., Hsu, H.-C., Hsu, S.-K., Liou, S.-P., Ho, W.-F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 39, 8183–8188 (2013). https://doi.org/10.1016/j.ceramint.2013.03.094

    Article  CAS  Google Scholar 

  42. Apalangya, V., Rangari, V., Jeelani, S., Dankyi, E., Yaya, A., Darko, S.: Rapid microwave synthesis of needle-liked hydroxyapatite nanoparticles via template directing ball-milled spindle-shaped eggshell particles. Ceram. Int. 44, 7165–7171 (2018). https://doi.org/10.1016/j.ceramint.2018.01.161

    Article  CAS  Google Scholar 

  43. Huang, Y.-C., Hsiao, P.-C., Chai, H.-J.: Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram. Int. 37, 1825–1831 (2011). https://doi.org/10.1016/j.ceramint.2011.01.018

    Article  CAS  Google Scholar 

  44. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522–532 (2013). https://doi.org/10.1016/j.cej.2012.11.054

    Article  CAS  Google Scholar 

  45. Venkatesan, J., Lowe, B., Manivasagan, P., Kang, K.-H., Chalisserry, E., Anil, S., Kim, D., Kim, S.-K.: Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials (Basel). 8, 5426–5439 (2015). https://doi.org/10.3390/ma8085253

    Article  CAS  Google Scholar 

  46. Paul, S., Pal, A., Choudhury, A.R., Bodhak, S., Balla, V.K., Sinha, A., Das, M.: Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceram. Int. 43, 15678–15684 (2017). https://doi.org/10.1016/j.ceramint.2017.08.127

    Article  CAS  Google Scholar 

  47. Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., Du, M.: Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C. 90, 706–712 (2018). https://doi.org/10.1016/j.msec.2018.04.026

    Article  CAS  Google Scholar 

  48. Sathiskumar, S., Vanaraj, S., Sabarinathan, D., Bharath, S., Sivarasan, G., Arulmani, S., Preethi, K., Ponnusamy, V.K.: Green synthesis of biocompatible nanostructured hydroxyapatite from Cirrhinus mrigala fish scale – a biowaste to biomaterial. Ceram. Int. 45, 7804–7810 (2019). https://doi.org/10.1016/j.ceramint.2019.01.086

    Article  CAS  Google Scholar 

  49. Deb, P., Deoghare, A.B.: Effect of pretreatment processes on physicochemical properties of hydroxyapatite synthesized from Puntius conchonius fish scales. Bull. Mater. Sci. 42, 3 (2019). https://doi.org/10.1007/s12034-018-1684-1

    Article  CAS  Google Scholar 

  50. Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., Wang, X.: Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater. Lett. 60, 1484–1487 (2006). https://doi.org/10.1016/j.matlet.2005.11.053

    Article  CAS  Google Scholar 

  51. Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., Zakeri, M.: Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 430, 330–333 (2007). https://doi.org/10.1016/j.jallcom.2006.05.018

    Article  CAS  Google Scholar 

  52. Götz, W., Lenz, S., Reichert, C., Henkel, K.-O., Ber, V.B., Pernicka, L., Gundlach, K.K.H., Gredes, T., Gerber, T., Gedrange, T., Heinemann, F.: A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem. Cytobiol. 48, 589–596 (2011). https://doi.org/10.2478/v10042-010-0096-x

    Article  Google Scholar 

  53. Canullo, L., Heinemann, F., Gedrange, T., Biffar, R., Kunert-Keil, C.: Histological evaluation at different times after augmentation of extraction sites grafted with a magnesium-enriched hydroxyapatite: double-blinded randomized controlled trial. Clin. Oral Implants Res. 24, 398–406 (2013). https://doi.org/10.1111/clr.12035

    Article  Google Scholar 

  54. Kunert-Keil, C., Scholz, F., Gedrange, T., Gredes, T.: Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects—a molecular-biological and histological study. Ann. Anat. - Anat. Anzeiger. 199, 79–84 (2015). https://doi.org/10.1016/j.aanat.2013.12.001

    Article  Google Scholar 

  55. Kubasiewicz-Ross, P., Hadzik, J., Seeliger, J., Kozak, K., Jurczyszyn, K., Gerber, H., Dominiak, M., Kunert-Keil, C.: New nano-hydroxyapatite in bone defect regeneration: a histological study in rats. Ann. Anat. - Anat. Anzeiger. 213, 83–90 (2017). https://doi.org/10.1016/j.aanat.2017.05.010

    Article  Google Scholar 

  56. Farokhi, M., Mottaghitalab, F., Samani, S., Shokrgozar, M.A., Kundu, S.C., Reis, R.L., Fatahi, Y., Kaplan, D.L.: Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 36, 68–91 (2018). https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  CAS  Google Scholar 

  57. Mondal, S., Dorozhkin, S.V., Pal, U.: Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WIREs Nanomedicine and Nanobiotechnology. 10, (2018). https://doi.org/10.1002/wnan.1504

  58. Goller, G., Oktar, F., Ozyegin, L., Kayali, E., Demirkesen, E.: Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Mater. Lett. 58, 2599–2604 (2004). https://doi.org/10.1016/j.matlet.2004.03.032

    Article  CAS  Google Scholar 

  59. Ozyegin, L.S., Oktar, F.N., Goller, G., Kayali, E.S., Yazici, T.: Plasma-sprayed bovine hydroxyapatite coatings. Mater. Lett. 58, 2605–2609 (2004). https://doi.org/10.1016/j.matlet.2004.03.033

    Article  CAS  Google Scholar 

  60. Barakat, N.A.M., Khil, M.S., Omran, A.M., Sheikh, F.A., Kim, H.Y.: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J. Mater. Process. Technol. 209, 3408–3415 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.040

    Article  CAS  Google Scholar 

  61. Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W., Toque, J.A.: The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C. 29, 1674–1680 (2009). https://doi.org/10.1016/j.msec.2009.01.007

    Article  CAS  Google Scholar 

  62. Elkayar, A., Elshazly, Y., Assaad, M.: Properties of hydroxyapatite from bovine teeth, Bone Tissue Regen. Insights. 2, BTRI.S3728 (2009). https://doi.org/10.4137/BTRI.S3728

    Article  Google Scholar 

  63. Kusrini, E., Sontang, M.: Characterization of x-ray diffraction and electron spin resonance: effects of sintering time and temperature on bovine hydroxyapatite. Radiat. Phys. Chem. 81, 118–125 (2012). https://doi.org/10.1016/j.radphyschem.2011.10.006

    Article  CAS  Google Scholar 

  64. Niakan, A., Ramesh, S., Ganesan, P., Tan, C.Y., Purbolaksono, J., Chandran, H., Ramesh, S., Teng, W.D.: Sintering behaviour of natural porous hydroxyapatite derived from bovine bone. Ceram. Int. 41, 3024–3029 (2015). https://doi.org/10.1016/j.ceramint.2014.10.138

    Article  CAS  Google Scholar 

  65. Londoño-Restrepo, S.M., Ramirez-Gutierrez, C.F., del Real, A., Rubio-Rosas, E., Rodriguez-García, M.E.: Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. J. Mater. Sci. 51, 4431–4441 (2016). https://doi.org/10.1007/s10853-016-9755-4

    Article  CAS  Google Scholar 

  66. Niakan, A., Ramesh, S., Naveen, S.V., Mohan, S., Kamarul, T.: Osteogenic priming potential of bovine hydroxyapatite sintered at different temperatures for tissue engineering applications. Mater. Lett. 197, 83–86 (2017). https://doi.org/10.1016/j.matlet.2017.03.057

    Article  CAS  Google Scholar 

  67. Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N.: Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng. C. 77, 470–475 (2017). https://doi.org/10.1016/j.msec.2017.03.290

    Article  CAS  Google Scholar 

  68. Jaber, H.L., Kovács, T.A.: Preparation and synthesis of hydroxyapatite bio-ceramic from bovine bone by thermal heat treatment, Epa. J. Silic. Based Compos. Mater. 71, 98–101 (2019) https://doi.org/10.14382/epitoanyag-jsbcm.2019.18

    Google Scholar 

  69. Odusote, J.K., Danyuo, Y., Baruwa, A.D., Azeez, A.A.: Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J. Appl. Biomater. Funct. Mater. 17, 228080001983682 (2019). https://doi.org/10.1177/2280800019836829

    Article  CAS  Google Scholar 

  70. Dupoirieux, L., Pourquier, D., Souyris, F.: Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery. J. Cranio-Maxillofacial Surg. 23, 187–194 (1995). https://doi.org/10.1016/S1010-5182(05)80009-5

    Article  CAS  Google Scholar 

  71. Caliman, L.B., da Silva, S.N., Junkes, J.A., Della Sagrillo, V.P.: Ostrich eggshell as an alternative source of calcium ions for biomaterials synthesis. Mater. Res. 20, 413–417 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0368

    Article  CAS  Google Scholar 

  72. Kamalanathan, P., Ramesh, S., Bang, L.T., Niakan, A., Tan, C.Y., Purbolaksono, J., Chandran, H., Teng, W.D.: Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram. Int. 40, 16349–16359 (2014). https://doi.org/10.1016/j.ceramint.2014.07.074

    Article  CAS  Google Scholar 

  73. Nuamsrinuan, N., Kaewwiset, W., Limsuwan, P., Naemchanthara, K.: Hydroxyapatite synthesized from waste eggshell via ball milling. Appl. Mech. Mater. 866, 12–16 (2017). https://doi.org/10.4028/www.scientific.net/AMM.866.12

    Article  Google Scholar 

  74. Geng, Z., Cheng, Y., Ma, L., Li, Z., Cui, Z., Zhu, S., Liang, Y., Liu, Y., Bao, H., Li, X., Yang, X.: Nanosized strontium substituted hydroxyapatite prepared from egg shell for enhanced biological properties. J. Biomater. Appl. 32, 896–905 (2018). https://doi.org/10.1177/0885328217748124

    Article  CAS  Google Scholar 

  75. Toibah, A.R., Misran, F., Shaaban, A., Mustafa, Z.: Effect of pH condition during hydrothermal synthesis on the properties of hydroxyapatite from eggshell waste. J. Mech. Eng. Sci. 13, 4958–4969 (2019). https://doi.org/10.15282/jmes.13.2.2019.14.0411

    Article  CAS  Google Scholar 

  76. Patel, D.K., Kim, M.-H., Lim, K.-T.: Synthesis and characterization of eggshell-derived hydroxyapatite bioceramics. J. Biosyst. Eng. 44, 128–133 (2019). https://doi.org/10.1007/s42853-019-00017-x

    Article  Google Scholar 

  77. Elvevoll, E.O., James, D.: The emerging importance of dietary lipids, quantity and quality, in the global disease burden: the potential of aquatic resources. Nutr. Health. 15, 155–167 (2001). https://doi.org/10.1177/026010600101500403

    Article  CAS  Google Scholar 

  78. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 32, 478–486 (2012). https://doi.org/10.1016/j.msec.2011.11.021

    Article  CAS  Google Scholar 

  79. Chakraborty, R., RoyChowdhury, D.: Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chem. Eng. J. 215–216, 491–499 (2013). https://doi.org/10.1016/j.cej.2012.11.064

    Article  CAS  Google Scholar 

  80. Pal, A., Paul, S., Choudhury, A.R., Balla, V.K., Das, M., Sinha, A.: Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 203, 89–92 (2017). https://doi.org/10.1016/j.matlet.2017.05.103

    Article  CAS  Google Scholar 

  81. Dabiri, S.M.H., Rezaie, A.A., Moghimi, M., Rezaie, H.: Extraction of hydroxyapatite from fish bones and its application in nickel adsorption. Bionanoscience. 8, 823–834 (2018). https://doi.org/10.1007/s12668-018-0547-y

    Article  Google Scholar 

  82. Yamamura, H., da Silva, V.H.P., Ruiz, P.L.M., Ussui, V., Lazar, D.R.R., Renno, A.C.M., Ribeiro, D.A.: Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J. Mech. Behav. Biomed. Mater. 80, 137–142 (2018). https://doi.org/10.1016/j.jmbbm.2018.01.035

    Article  CAS  Google Scholar 

  83. Sricharoen, P., Limchoowong, N., Nuengmatcha, P., Chanthai, S.: Ultrasonic-assisted recycling of Nile tilapia fish scale biowaste into low-cost nano-hydroxyapatite: ultrasonic-assisted adsorption for Hg2+ removal from aqueous solution followed by “turn-off” fluorescent sensor based on Hg2+-graphene quantum dots. Ultrason. Sonochem. 63, 104966 (2020). https://doi.org/10.1016/j.ultsonch.2020.104966

    Article  CAS  Google Scholar 

  84. Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  85. Zhang, Y., Lu, J.: The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods. Nanotechnology. 19, 155608 (2008). https://doi.org/10.1088/0957-4484/19/15/155608

    Article  CAS  Google Scholar 

  86. Tao, J., Jiang, W., Pan, H., Xu, X., Tang, R.: Preparation of large-sized hydroxyapatite single crystals using homogeneous releasing controls. J. Cryst. Growth. 308, 151–158 (2007). https://doi.org/10.1016/j.jcrysgro.2007.08.009

    Article  CAS  Google Scholar 

  87. Padmanabhan, S.K., Balakrishnan, A., Chu, M.-C., Lee, Y.J., Kim, T.N., Cho, S.-J.: Sol–gel synthesis and characterization of hydroxyapatite nanorods. Particuology. 7, 466–470 (2009). https://doi.org/10.1016/j.partic.2009.06.008

    Article  CAS  Google Scholar 

  88. Bose, S., Saha, S.K.: Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method. J. Am. Ceram. Soc. 86, 1055–1057 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03423.x

    Article  CAS  Google Scholar 

  89. Ruban Kumar, A., Kalainathan, S.: Sol–gel synthesis of nanostructured hydroxyapatite powder in presence of polyethylene glycol. Phys. B Condens. Matter. 405, 2799–2802 (2010). https://doi.org/10.1016/j.physb.2010.03.067

    Article  CAS  Google Scholar 

  90. Bigi, A., Boanini, E., Rubini, K.: Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J. Solid State Chem. 177, 3092–3098 (2004). https://doi.org/10.1016/j.jssc.2004.05.018

    Article  CAS  Google Scholar 

  91. Ramanan, S.R., Venkatesh, R.: A study of hydroxyapatite fibers prepared via sol–gel route. Mater. Lett. 58, 3320–3323 (2004). https://doi.org/10.1016/j.matlet.2004.06.030

    Article  CAS  Google Scholar 

  92. Jokić, B., Mitrić, M., Radmilović, V., Drmanić, S., Petrović, R., Janaćković, D.: Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceram. Int. 37, 167–173 (2011). https://doi.org/10.1016/j.ceramint.2010.08.032

    Article  CAS  Google Scholar 

  93. Zhang, H., Darvell, B.W.: Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide. Acta Biomater. 6, 3216–3222 (2010). https://doi.org/10.1016/j.actbio.2010.02.011

    Article  CAS  Google Scholar 

  94. Cihlar, J., Castkova, K.: Direct synthesis of nanocrystalline hydroxyapatite by hydrothermal hydrolysis of Alkylphosphates. Springer, Vienna (2002)

    Google Scholar 

  95. Jevtić, M., Mitrić, M., Škapin, S., Jančar, B., Ignjatović, N., Uskoković, D.: Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst. Growth Des. 8, 2217–2222 (2008). https://doi.org/10.1021/cg7007304

    Article  CAS  Google Scholar 

  96. Zhou, W.Y., Wang, M., Cheung, W.L., Guo, B.C., Jia, D.M.: Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 19, 103–110 (2008). https://doi.org/10.1007/s10856-007-3156-9

    Article  CAS  Google Scholar 

  97. Zhu, K., Yanagisawa, K., Onda, A., Kajiyoshi, K., Qiu, J.: Morphology variation of cadmium hydroxyapatite synthesized by high temperature mixing method under hydrothermal conditions. Mater. Chem. Phys. 113, 239–243 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.049

    Article  CAS  Google Scholar 

  98. Lim, G.K., Wang, J., Ng, S.C., Gan, L.M.: Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir. 15, 7472–7477 (1999). https://doi.org/10.1021/la981659+

    Article  CAS  Google Scholar 

  99. Lim, G.K., Wang, J., Ng, S.C., Gan, L.M.: Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. J. Mater. Chem. 9, 1635–1639 (1999). https://doi.org/10.1039/a809644i

    Article  CAS  Google Scholar 

  100. Jarudilokkul, S., Tanthapanichakoon, W., Boonamnuayvittaya, V.: Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surfaces A Physicochem. Eng. Asp. 296, 149–153 (2007). https://doi.org/10.1016/j.colsurfa.2006.09.038

    Article  CAS  Google Scholar 

  101. Ethirajan, A., Ziener, U., Chuvilin, A., Kaiser, U., Cölfen, H., Landfester, K.: Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Funct. Mater. 18, 2221–2227 (2008). https://doi.org/10.1002/adfm.200800048

    Article  CAS  Google Scholar 

  102. Li, H., Zhu, M., Li, L., Zhou, C.: Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J. Mater. Sci. 43, 384–389 (2008). https://doi.org/10.1007/s10853-007-2182-9

    Article  CAS  Google Scholar 

  103. Mechay, A., Feki, H.E.L., Schoenstein, F., Jouini, N.: Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium. Chem. Phys. Lett. 541, 75–80 (2012). https://doi.org/10.1016/j.cplett.2012.05.047

    Article  CAS  Google Scholar 

  104. Shih, W.-J., Wang, M.-C., Hon, M.-H.: Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J. Cryst. Growth. 275, e2339–e2344 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.330

    Article  CAS  Google Scholar 

  105. Vukomanović, M., Bračko, I., Poljanšek, I., Uskoković, D., Škapin, S.D., Suvorov, D.: The growth of silver nanoparticles and their combination with hydroxyapatite to form composites via a sonochemical approach. Cryst. Growth Des. 11, 3802–3812 (2011). https://doi.org/10.1021/cg2003436

    Article  CAS  Google Scholar 

  106. Dey, S., Das, M., Balla, V.K.: Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Mater. Sci. Eng. C. 39, 336–339 (2014). https://doi.org/10.1016/j.msec.2014.03.022

    Article  CAS  Google Scholar 

  107. Kim, W., Saito, F.: Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2. Ultrason. Sonochem. 8, 85–88 (2001). https://doi.org/10.1016/S1350-4177(00)00034-1

    Article  CAS  Google Scholar 

  108. Han, Y., Li, S., Wang, X., Bauer, I., Yin, M.: Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Ultrason. Sonochem. 14, 286–290 (2007). https://doi.org/10.1016/j.ultsonch.2006.06.002

    Article  CAS  Google Scholar 

  109. Wasim, M., Malik, R.S., Tufail, M.U., Jutt, A.U., Ahmad, R., Deen, K.M.: Synthesis and characterization of hydroxyapatite powder from natural bovine bone, J. Biomimetics, Biomater. Tissue Eng. 19, 35–42 (2014). https://doi.org/10.4028/www.scientific.net/JBBTE.19.35

    Article  CAS  Google Scholar 

  110. Sahni, G., Gopinath, P., Jeevanandam, P.: A novel thermal decomposition approach to synthesize hydroxyapatite–silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli. Colloids Surfaces B Biointerfaces. 103, 441–447 (2013). https://doi.org/10.1016/j.colsurfb.2012.10.050

    Article  CAS  Google Scholar 

  111. Barralet, J., Knowles, J.C., Best, S., Bonfield, W.: Thermal decomposition of synthesised carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 13, 529–533 (2002). https://doi.org/10.1023/A:1015175108668

    Article  CAS  Google Scholar 

  112. Ozawa, M., Suzuki, S.: Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J. Am. Ceram. Soc. 85, 1315–1317 (2004). https://doi.org/10.1111/j.1151-2916.2002.tb00268.x

    Article  Google Scholar 

  113. Cho, J.S., Kang, Y.C.: Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J. Alloys Compd. 464, 282–287 (2008). https://doi.org/10.1016/j.jallcom.2007.09.092

    Article  CAS  Google Scholar 

  114. Aizawa, M., Hanazawa, T., Itatani, K., Howell, F.S., Kishioka, A.: Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J. Mater. Sci. 34, 2865–2873 (1999). https://doi.org/10.1023/A:1004635418655

    Article  CAS  Google Scholar 

  115. Wakiya, N., Yamasaki, M., Adachi, T., Inukai, A., Sakamoto, N., Fu, D., Sakurai, O., Shinozaki, K., Suzuki, H.: Preparation of hydroxyapatite–ferrite composite particles by ultrasonic spray pyrolysis. Mater. Sci. Eng. B. 173, 195–198 (2010). https://doi.org/10.1016/j.mseb.2009.12.013

    Article  CAS  Google Scholar 

  116. Hwang, K.-S., Jeon, K.-O., Jeon, Y.-S., Kim, B.-H.: Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder. J. Mater. Sci. Mater. Med. 18, 619–622 (2007). https://doi.org/10.1007/s10856-007-2310-8

    Article  CAS  Google Scholar 

  117. Sasikumar, S., Vijayaraghavan, R.: Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion. Sci. Technol. Adv. Mater. 9, 035003 (2008). https://doi.org/10.1088/1468-6996/9/3/035003

    Article  CAS  Google Scholar 

  118. Aghayan, M.A., Rodríguez, M.A.: Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Mater. Sci. Eng. C. 32, 2464–2468 (2012). https://doi.org/10.1016/j.msec.2012.07.027

    Article  CAS  Google Scholar 

  119. Ghosh, S.K., Roy, S.K., Kundu, B., Datta, S., Basu, D.: Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater. Sci. Eng. B. 176, 14–21 (2011). https://doi.org/10.1016/j.mseb.2010.08.006

    Article  CAS  Google Scholar 

  120. Pratihar, S.K., Garg, M., Mehra, S., Bhattacharyya, S.: Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique. J. Mater. Sci. Mater. Med. 17, 501–507 (2006). https://doi.org/10.1007/s10856-006-8932-4

    Article  CAS  Google Scholar 

  121. Tas, A.C.: Combustion synthesis of calcium phosphate bioceramic powders. J. Eur. Ceram. Soc. 20, 2389–2394 (2000). https://doi.org/10.1016/S0955-2219(00)00129-1

    Article  CAS  Google Scholar 

  122. Pramanik, S., Agarwal, A.K., Rai, K.N.: Development of high strength hydroxyapatite for hard tissue replacement, Trends Biomater. Artif. Organs. 19, 46–51 (2005)

    Google Scholar 

  123. Zhang, H.G., Zhu, Q.: Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route. J. Mater. Sci. Mater. Med. 17, 691–695 (2006). https://doi.org/10.1007/s10856-006-9679-7

    Article  CAS  Google Scholar 

  124. Teshima, K., Lee, S., Sakurai, M., Kameno, Y., Yubuta, K., Suzuki, T., Shishido, T., Endo, M., Oishi, S.: Well-formed one-dimensional hydroxyapatite crystals grown by an environmentally friendly flux method. Cryst. Growth Des. 9, 2937–2940 (2009). https://doi.org/10.1021/cg900159j

    Article  CAS  Google Scholar 

  125. Cüneyt Tas, A.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 21, 1429–1438 (2000). https://doi.org/10.1016/S0142-9612(00)00019-3

    Article  Google Scholar 

  126. Silva, C.C., Graça, M.P.F., Valente, M.A., Sombra, A.S.B.: Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J. Mater. Sci. 42, 3851–3855 (2007). https://doi.org/10.1007/s10853-006-0474-0

    Article  CAS  Google Scholar 

  127. Fahami, A., Ebrahimi-Kahrizsangi, R., Nasiri-Tabrizi, B.: synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 13, 135–141 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.10.026

    Article  CAS  Google Scholar 

  128. Nasiri-Tabrizi, B., Honarmandi, P., Ebrahimi-Kahrizsangi, R., Honarmandi, P.: Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater. Lett. 63, 543–546 (2009). https://doi.org/10.1016/j.matlet.2008.11.030

    Article  CAS  Google Scholar 

  129. El Briak-BenAbdeslam, H., Ginebra, M.P., Vert, M., Boudeville, P.: Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD–CaO reaction kinetics. Acta Biomater. 4, 378–386 (2008). https://doi.org/10.1016/j.actbio.2007.07.003

    Article  CAS  Google Scholar 

  130. Fathi, M.H., Mohammadi Zahrani, E.: Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. J. Cryst. Growth. 311, 1392–1403 (2009). https://doi.org/10.1016/j.jcrysgro.2008.11.100

    Article  CAS  Google Scholar 

  131. Yeong, B., Junmin, X., Wang, J.: Mechanochemical synthesis of hydroxyapatite from calcium oxide and brushite. J. Am. Ceram. Soc. 84, 465–467 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00681.x

    Article  Google Scholar 

  132. Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R., Roy, K.: Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bull. Mater. Sci. 35, 683–691 (2012). https://doi.org/10.1007/s12034-012-0346-y

    Article  CAS  Google Scholar 

  133. Mondal, S., Pal, U., Dey, A.: Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram. Int. 42, 18338–18346 (2016). https://doi.org/10.1016/j.ceramint.2016.08.165

    Article  CAS  Google Scholar 

  134. Charlena, I.H., Suparto, D.K.: Putri, Synthesis of hydroxyapatite from rice fields snail shell (Bellamya javanica) through wet method and pore modification using chitosan. Procedia Chem. 17, 27–35 (2015). https://doi.org/10.1016/j.proche.2015.12.120

    Article  CAS  Google Scholar 

  135. Sobczak, A., Kida, A., Kowalski, Z., Wzorek, Z.: Evaluation of the biomedical properties of hydroxyapatite obtained from bone waste. PJCT. 11, 37–43 (2009). https://doi.org/10.2478/v10026-009-0010-5

    Article  Google Scholar 

  136. Mondal, S., Mondal, B., Dey, A., Mukhopadhyay, S.S.: Studies on Processing and Characterization of hydroxyapatite biomaterials from different bio wastes. J. Miner. Mater. Charact. Eng. 11, 55–67 (2012). https://doi.org/10.4236/jmmce.2012.111005

    Article  Google Scholar 

  137. Mondal, S., Mahata, S., Kundu, S., Mondal, B.: Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 109, 234–239 (2010). https://doi.org/10.1179/174367613X13789812714425

    Article  CAS  Google Scholar 

  138. Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S.S., Dey, A., Singh, S.: Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess Biosyst. Eng. 37, 1233–1240 (2014). https://doi.org/10.1007/s00449-013-1095-z

    Article  CAS  Google Scholar 

  139. Doostmohammadi, A., Monshi, A., Fathi, M.H., Braissant, O.: A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceram. Int. 37, 1601–1607 (2011). https://doi.org/10.1016/j.ceramint.2011.03.009

    Article  CAS  Google Scholar 

  140. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., Legeros, J.P.: Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14, 201–209 (2003). https://doi.org/10.1023/A:1022872421333

    Article  CAS  Google Scholar 

  141. Obada, D.O., Salami, K.A., Oyedeji, A.N., Fasanya, O.O., Suleiman, M.U., Ibisola, B.A., Atta, A.Y., Dodoo-Arhin, D., Kuburi, L.S., Dauda, M., Dauda, E.T.: Solution combustion synthesis of strontium-doped hydroxyapatite: effect of sintering and low compaction pressure on the mechanical properties and physiological stability. Mater. Lett. 304, 130613 (2021). https://doi.org/10.1016/j.matlet.2021.130613

    Article  CAS  Google Scholar 

  142. Kang, S.J.L.: Sintering processes. In: Sintering, pp. 3–8. Butterworth-Heinemann, Oxford, UK (2005)

    Chapter  Google Scholar 

  143. Itatani, K., Tsugawa, T., Umeda, T., Musha, Y., Davies, I.J., Koda, S.: Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique. J. Ceram. Soc. Japan. 118, 462–466 (2010). https://doi.org/10.2109/jcersj2.118.462

    Article  CAS  Google Scholar 

  144. Manso, M.: Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials. 21, 1755–1761 (2000). https://doi.org/10.1016/S0142-9612(00)00061-2

    Article  CAS  Google Scholar 

  145. Shirkhanzadeh, M., Azadegan, M., Stack, V., Schreyer, S.: Fabrication of pure hydroxyapatite and fluoridated-hydroxyapatite coatings by electrocrystallisation. Mater. Lett. 18, 211–214 (1994). https://doi.org/10.1016/0167-577X(94)90233-X

    Article  CAS  Google Scholar 

  146. Zhang, H., Cooper, A.I.: Synthesis and applications of emulsion-templated porous materials. Soft Matter. 1, 107 (2005). https://doi.org/10.1039/b502551f

    Article  CAS  Google Scholar 

  147. Yang, J.-H., Kim, K.-H., You, C.-K., Rautray, T.R., Kwon, T.-Y.: Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 150–157 (2011). https://doi.org/10.1002/jbm.b.31882

    Article  CAS  Google Scholar 

  148. Pushpakanth, S., Srinivasan, B., Sreedhar, B., Sastry, T.P.: An in situ approach to prepare nanorods of titania–hydroxyapatite (TiO2–HAp) nanocomposite by microwave hydrothermal technique. Mater. Chem. Phys. 107, 492–498 (2008). https://doi.org/10.1016/j.matchemphys.2007.08.029

    Article  CAS  Google Scholar 

  149. Han, J.-K., Song, H.-Y., Saito, F., Lee, B.-T.: Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater. Chem. Phys. 99, 235–239 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.017

    Article  CAS  Google Scholar 

  150. Prokopiev, O., Sevostianov, I.: Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A. 431, 218–227 (2006). https://doi.org/10.1016/j.msea.2006.05.158

    Article  CAS  Google Scholar 

  151. Grossin, D., Rollin-Martinet, S., Estournès, C., Rossignol, F., Champion, E., Combes, C., Rey, C., Geoffroy, C., Drouet, C.: Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 6, 577–585 (2010). https://doi.org/10.1016/j.actbio.2009.08.021

    Article  CAS  Google Scholar 

  152. Wang, P.E., Chaki, T.K.: Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J. Mater. Sci. Mater. Med. 4, 150–158 (1993). https://doi.org/10.1007/BF00120384

    Article  CAS  Google Scholar 

  153. Mazaheri, M., Haghighatzadeh, M., Zahedi, A.M., Sadrnezhaad, S.K.: Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. J. Alloys Compd. 471, 180–184 (2009). https://doi.org/10.1016/j.jallcom.2008.03.066

    Article  CAS  Google Scholar 

  154. Chen, I.-W., Wang, X.-H.: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 404, 168–171 (2000). https://doi.org/10.1038/35004548

    Article  CAS  Google Scholar 

  155. Obada, D.O., Dauda, E.T., Abifarin, J.K., Dodoo-Arhin, D., Bansod, N.D.: Mechanical properties of natural hydroxyapatite using low cold compaction pressure: effect of sintering temperature. Mater. Chem. Phys. 239, 122099 (2020). https://doi.org/10.1016/j.matchemphys.2019.122099

    Article  CAS  Google Scholar 

  156. Osuchukwu, O.A., Salihi, A., Abdullahi, I., Obada, D.O.: Experimental data on the characterization of hydroxyapatite produced from a novel mixture of biowastes. Data Br. 42, 108305 (2022). https://doi.org/10.1016/j.dib.2022.108305

    Article  CAS  Google Scholar 

  157. Sabree, I., Gough, J.E., Derby, B.: Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41, 8425–8432 (2015). https://doi.org/10.1016/j.ceramint.2015.03.044

    Article  CAS  Google Scholar 

  158. Kothapalli, C., Wei, M., Vasiliev, A., Shaw, M.T.: Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater. 52, 5655–5663 (2004). https://doi.org/10.1016/j.actamat.2004.08.027

    Article  CAS  Google Scholar 

  159. Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K.: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 10, 12871–12934 (2018). https://doi.org/10.1039/C8NR02278J

    Article  CAS  Google Scholar 

  160. Lemons, J.E.: Ceramics: Past, present, and future. Bone. 19, S121–S128 (1996). https://doi.org/10.1016/S8756-3282(96)00128-7

    Article  Google Scholar 

  161. Yin, H., Qi, H.J., Fan, F., Zhu, T., Wang, B., Wei, Y.: Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918–1924 (2015). https://doi.org/10.1021/nl5047686

    Article  CAS  Google Scholar 

  162. Disegi, J.A., Eschbach, L.: Stainless steel in bone surgery. Injury. 31, D2–D6 (2000). https://doi.org/10.1016/S0020-1383(00)80015-7

    Article  Google Scholar 

  163. Meaney, D.F.: Mechanical properties of implantable biomaterials. Clin. Podiatr. Med. Surg. 12, 363–384 (1995)

    CAS  Google Scholar 

  164. Orban, J.M., Marra, K.G., Hollinger, J.O.: Composition options for tissue-engineered bone. Tissue Eng. 8, 529–539 (2002). https://doi.org/10.1089/107632702760240454

    Article  CAS  Google Scholar 

  165. Tabata, Y.: Tissue regeneration based on growth factor release. Tissue Eng. 9, 5–15 (2003). https://doi.org/10.1089/10763270360696941

    Article  Google Scholar 

  166. Zellin, G., Hedner, E., Linde, A.: Bone regeneration by a combination of osteopromotive membranes with different BMP preparations: a review. Connect. Tissue Res. 35, 279–284 (1996). https://doi.org/10.3109/03008209609029202

    Article  CAS  Google Scholar 

  167. Cancedda, R., Mastrogiacomo, M., Bianchi, G., Derubeis, A., Muraglia, A., Quarto, R.: Bone marrow stromal cells and their use in regenerating bone. Novartis Found. Symp. 249, 133–147 (2003) http://www.ncbi.nlm.nih.gov/pubmed/12708654

    Google Scholar 

  168. Warren, S.M., Nacamuli, R.K., Song, H.M., Longaker, M.T.: Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J. Craniofac. Surg. 15, 34–37 (2004). https://doi.org/10.1097/00001665-200401000-00012

    Article  Google Scholar 

  169. Ohgushi, H., Miyake, J., Tateishi, T.: Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton. Novartis Found. Symp. 249, 118–126 (2003) http://www.ncbi.nlm.nih.gov/pubmed/12708653

    Google Scholar 

  170. Park, H.K., Dujovny, M., Agner, C., Diaz, F.G.: Biomechanical properties of calvarium prosthesis. Neurol. Res. 23, 267–276 (2001). https://doi.org/10.1179/016164101101198424

    Article  CAS  Google Scholar 

  171. Pohler, O.E.M.: Unalloyed titanium for implants in bone surgery. Injury. 31, D7–D13 (2000). https://doi.org/10.1016/S0020-1383(00)80016-9

    Article  Google Scholar 

  172. Rah, D.K.: Art of replacing craniofacial bone defects. Yonsei Med. J. 41, 756 (2000). https://doi.org/10.3349/ymj.2000.41.6.756

    Article  CAS  Google Scholar 

  173. Tay, B., Kleinstueck, F., Bradford, D., Berven, S.: Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur. Spine J. 10, S169–S177 (2001). https://doi.org/10.1007/s005860100270

    Article  Google Scholar 

  174. Dard, M., Sewing, A., Meyer, J., Verrier, S., Roessler, S., Scharnweber, D.: Tools for tissue engineering of mineralized oral structures. Clin. Oral Investig. 4, 126–129 (2000). https://doi.org/10.1007/s007840050128

    Article  CAS  Google Scholar 

  175. Hollinger, J.O., Seyfer, A.E.: Bioactive factors and biosynthetic materials in bone grafting. Clin. Plast. Surg. 21, 415–418 (1994)

    Article  CAS  Google Scholar 

  176. Kirker-Head, C.A.: Recombinant bone morphogenetic proteins: novel substances for enhancing bone healing. Vet. Surg. 24, 408–419 (1995). https://doi.org/10.1111/j.1532-950X.1995.tb01352.x

    Article  CAS  Google Scholar 

  177. Lee, Y.-M., Seol, Y.-J., Lim, Y.-T., Kim, S., Han, S.-B., Rhyu, I.-C., Baek, S.-H., Heo, S.-J., Choi, J.-Y., Klokkevold, P.R., Chung, C.-P.: Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater. Res. 54, 216–223 (2001). https://doi.org/10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C

  178. Muster, D., Barbosa, M.A.: Biomaterials: hard tissue repair and replacement. North-Holland (1992)

    Google Scholar 

  179. Harabi, E., Harabi, A., Mezahi, F.-Z., Zouai, S., Karboua, N.-E., Chehlatt, S.: Effect of P2O5 on mechanical properties of porous natural hydroxyapatite derived from cortical bovine bones sintered at 1,050°C. Desalin. Water Treat. 57, 5297–5302 (2016). https://doi.org/10.1080/19443994.2015.1022000

    Article  CAS  Google Scholar 

  180. Obada, D.O., Dauda, E.T., Abifarin, J.K., Bansod, N.D., Dodoo-Arhin, D.: Mechanical measurements of pure and kaolin reinforced hydroxyapatite-derived scaffolds: a comparative study. Mater. Today Proc. 38, 2295–2300 (2021). https://doi.org/10.1016/j.matpr.2020.06.412

    Article  CAS  Google Scholar 

  181. Obada, D.O., Osseni, S.A., Sina, H., Salami, K.A., Oyedeji, A.N., Dodoo-Arhin, D., Bansod, N.D., Csaki, S., Atta, A.Y., Fasanya, O.O., Sowunmi, A.R., Kuburi, L.S., Dauda, M., Abifarin, J.K., Dauda, E.T.: Fabrication of novel kaolin-reinforced hydroxyapatite scaffolds with robust compressive strengths for bone regeneration. Appl. Clay Sci. 215, 106298 (2021). https://doi.org/10.1016/j.clay.2021.106298

    Article  CAS  Google Scholar 

  182. Margolis, J.: The kaolin clotting time: a rapid one-stage method for diagnosis of coagulation defects. J. Clin. Pathol. 11, 406–409 (1958). https://doi.org/10.1136/jcp.11.5.406

    Article  CAS  Google Scholar 

  183. Wanna, D., Alam, C., Toivola, D.M., Alam, P.: Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 045002 (2013). https://doi.org/10.1088/2043-6262/4/4/045002

    Article  CAS  Google Scholar 

  184. Véliz, D.S., Alam, C., Toivola, D.M., Toivakka, M., Alam, P.: On the non-linear attachment characteristics of blood to bacterial cellulose/kaolin biomaterials. Colloids Surfaces B Biointerfaces. 116, 176–182 (2014). https://doi.org/10.1016/j.colsurfb.2013.12.038

    Article  CAS  Google Scholar 

  185. Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A.: Potentials of fabricating porous ceramic bodies from kaolin for catalytic substrate applications. Appl. Clay Sci. 132–133, 194–204 (2016). https://doi.org/10.1016/j.clay.2016.06.006

    Article  CAS  Google Scholar 

  186. Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A., Samotu, I.A.: Effect of mechanical activation on mullite formation in an alumina-silica ceramics system at lower temperature. World J. Eng. 13, 288–293 (2016). https://doi.org/10.1108/WJE-08-2016-039

    Article  CAS  Google Scholar 

  187. Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A., Samotu, I.A.: Physical and mechanical properties of porous kaolin based ceramics at different sintering temperatures. West Indian J. Eng. 39, 72–80 (2016)

    Google Scholar 

  188. Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A.: The impact of kaolin dehydroxylation on the porosity and mechanical integrity of kaolin based ceramics using different pore formers. Results Phys. 7, 2718–2727 (2017). https://doi.org/10.1016/j.rinp.2017.07.048

    Article  Google Scholar 

  189. Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A.: Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications. Results Phys. 7, 3838–3846 (2017). https://doi.org/10.1016/j.rinp.2017.10.002

    Article  Google Scholar 

  190. Kokubo, T., Yamaguchi, S.: 1.13 Bioactive layer formation on metals and polymers ☆. In: Comprehensive Biomaterials II, pp. 311–332. Elsevier (2017). https://doi.org/10.1016/B978-0-12-803581-8.09399-1

    Chapter  Google Scholar 

  191. Liang, C., Luo, Y., Yang, G., Xia, D., Liu, L., Zhang, X., Wang, H.: Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res. Lett. 13, 15 (2018). https://doi.org/10.1186/s11671-018-2432-6

    Article  CAS  Google Scholar 

  192. Chen, Q., Zhu, C., Thouas, G.A.: Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog. Biomater. 1, 2 (2012). https://doi.org/10.1186/2194-0517-1-2

    Article  Google Scholar 

  193. Amaral, M., Lopes, M.A., Silva, R.F., Santos, J.D.: Densification route and mechanical properties of Si3N4–bioglass biocomposites. Biomaterials. 23, 857–862 (2002). https://doi.org/10.1016/S0142-9612(01)00194-6

    Article  CAS  Google Scholar 

  194. Kokubo, T., Kim, H.-M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomaterials. 24, 2161–2175 (2003). https://doi.org/10.1016/S0142-9612(03)00044-9

    Article  CAS  Google Scholar 

  195. Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 243, 231–236 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X

    Article  Google Scholar 

  196. Katti, K.S.: Biomaterials in total joint replacement. Colloids Surfaces B Biointerfaces. 39, 133–142 (2004). https://doi.org/10.1016/j.colsurfb.2003.12.002

    Article  CAS  Google Scholar 

  197. Marković, S., Rau, J.V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S.D., Vengust, D.: Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. Surf. Coatings Technol. 437, 128275 (2022). https://doi.org/10.1016/j.surfcoat.2022.128275

    Article  CAS  Google Scholar 

  198. Ahmadi, R., Asadpourchallou, N., Kaleji, B.K.: In vitro study: evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surfaces and Interfaces. 24, 101072 (2021). https://doi.org/10.1016/j.surfin.2021.101072

    Article  CAS  Google Scholar 

  199. Abir, M.M.M., Otsuka, Y., Ohnuma, K., Miyashita, Y.: Effects of composition of hydroxyapatite/gray titania coating fabricated by suspension plasma spraying on mechanical and antibacterial properties. J. Mech. Behav. Biomed. Mater. 125, 104888 (2022). https://doi.org/10.1016/j.jmbbm.2021.104888

    Article  CAS  Google Scholar 

  200. Rogala-Wielgus, D., Majkowska-Marzec, B., Zieliński, A., Jankiewicz, B.J.: Mechanical behavior of bi-layer and dispersion coatings composed of several nanostructures on Ti substrate. Appl. Sci. 11, 7862 (2021). https://doi.org/10.3390/app11177862

    Article  CAS  Google Scholar 

  201. Praharaj, R., Mishra, S., Misra, R.D.K., Rautray, T.R.: Biocompatibility and adhesion response of magnesium-hydroxyapatite/strontium-titania (Mg-HAp/ Sr-TiO 2 ) bilayer coating on titanium. Mater. Technol. 37, 230–239 (2022). https://doi.org/10.1080/10667857.2020.1825898

    Article  CAS  Google Scholar 

  202. Samiksha, M., Gnanamoorthy, R., Otsuka, Y.: Fretting wear characteristics of suspension plasma-sprayed hydroxyapatite coating on titanium substrate for orthopedic applications. J. Mater. Eng. Perform. 31(9), 7290–7301 (2022). https://doi.org/10.1007/s11665-022-06753-0

    Article  CAS  Google Scholar 

  203. Brown, S.R., Turner, I.G.: Acoustic emission analysis of thermal sprayed hydroxyapatite coatings examined under four point bend loading. Surf. Eng. 14, 309–313 (1998). https://doi.org/10.1179/sur.1998.14.4.309

    Article  CAS  Google Scholar 

  204. Rios-Soberanis, C.R., Wakayama, S., Sakai, T., Cervantes-Uc, J.M., May-Pat, A.: Evaluation of mechanical behaviour of bone cements by using acoustic emission technique. Adv. Mater. Res. 856, 246–250 (2014). https://doi.org/10.4028/www.scientific.net/AMR.856.246

    Article  CAS  Google Scholar 

  205. Rakngarm Nimkerdphol, A., Loanapakul, T., Otsuka, Y., Mutoh, Y.: Effect of apatite precipitation on failure behavior of hydroxyapatite coating layer on titanium substrate. Adv. Mater. Res. 506, 61–65 (2012). https://doi.org/10.4028/www.scientific.net/AMR.506.61

    Article  CAS  Google Scholar 

  206. Suzuki, Y., Oshima, T., Kobayashi, S., Wakayama, S.: AE Characterization of microfracture process in bioceramics for artificial joints under simulated body environment. Proc. Conf. Kanto Branch. 2004(10), 149–150 (2004). https://doi.org/10.1299/jsmekanto.2004.10.149

    Article  Google Scholar 

  207. Laonapakul, T., Otsuka, Y., Mutoh, Y.: Fatigue and acoustic emission behavior of plasma sprayed HAp top coat and HAp/Ti bond coat with HAp top coat on commercially pure titanium. Key Eng. Mater. 452–453, 857–860 (2011). https://doi.org/10.4028/www.scientific.net/KEM.452-453.857

    Article  CAS  Google Scholar 

  208. Laonapakul, T., Otsuka, Y., Nimkerdphol, A.R., Mutoh, Y.: Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers. J. Mech. Behav. Biomed. Mater. 8, 123–133 (2012). https://doi.org/10.1016/j.jmbbm.2011.11.011

    Article  CAS  Google Scholar 

  209. Laonapakul, T., Rakngarm Nimkerdphol, A., Otsuka, Y., Mutoh, Y.: Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF) under bending load. J. Mech. Behav. Biomed. Mater. 15, 153–166 (2012). https://doi.org/10.1016/j.jmbbm.2012.05.017

    Article  CAS  Google Scholar 

  210. Palmqvist, S.: Method att Bestamma Segheten hos Spread Materials. Sarkskilt Hardmetaller, Jernkortorets Ann. 141, 300–307 (1957)

    Google Scholar 

  211. Evans, A.G., Charles, E.A.: Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59, 371–372 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  212. Quinn, G.D., Bradt, R.C.: On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673–680 (2007). https://doi.org/10.1111/j.1551-2916.2006.01482.x

    Article  CAS  Google Scholar 

  213. Chicot, D., Pertuz, A., Roudet, F., Staia, M.H., Lesage, J.: New developments for fracture toughness determination by Vickers indentation. Mater. Sci. Technol. 20, 877–884 (2004). https://doi.org/10.1179/026708304225017427

    Article  CAS  Google Scholar 

  214. Niihara, K.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J. Mater. Sci. Lett. 2, 221–223 (1983). https://doi.org/10.1007/BF00725625

    Article  CAS  Google Scholar 

  215. Ponton, C.B., Rawlings, R.D.: Vickers indentation fracture toughness test part 2 application and critical evaluation of standardised indentation toughness equations. Mater. Sci. Technol. 5, 961–976 (1989). https://doi.org/10.1179/mst.1989.5.10.961

    Article  CAS  Google Scholar 

  216. Shukla, P.P., Lawrence, J.: Fracture toughness modification by using a fibre laser surface treatment of a silicon nitride engineering ceramic. J. Mater. Sci. 45, 6540–6555 (2010). https://doi.org/10.1007/s10853-010-4743-6

    Article  CAS  Google Scholar 

  217. Lawn, B.R., Swain, M.V.: Microfracture beneath point indentations in brittle solids. J. Mater. Sci. 10, 113–122 (1975). https://doi.org/10.1007/BF00541038

    Article  CAS  Google Scholar 

  218. Lawn, B.R., Fuller, E.R.: Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016–2024 (1975). https://doi.org/10.1007/BF00557479

    Article  CAS  Google Scholar 

  219. Lawn, B.R., Evans, A.G., Marshall, D.B.: Elastic/plastic indentation damage in ceramics: the median/radial crack system. J. Am. Ceram. Soc. 63, 574–581 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10768.x

    Article  CAS  Google Scholar 

  220. Niihara, K., Morena, R., Hasselman, D.P.H.: Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982). https://doi.org/10.1007/BF00724706

    Article  CAS  Google Scholar 

  221. Lankford, J.: Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method. J. Mater. Sci. Lett. 1, 493–495 (1982). https://doi.org/10.1007/BF00721938

    Article  CAS  Google Scholar 

  222. Laugier, M.T.: The elastic/plastic indentation of ceramics. J. Mater. Sci. Lett. 4, 1539–1541 (1985). https://doi.org/10.1007/BF00721390

    Article  CAS  Google Scholar 

  223. Tanaka, K.: Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model. J. Mater. Sci. 22, 1501–1508 (1987). https://doi.org/10.1007/BF01233154

    Article  Google Scholar 

  224. Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  225. Chicot, D., Duarte, G., Tricoteaux, A., Jorgowski, B., Leriche, A., Lesage, J.: Vickers indentation fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings. Mater. Sci. Eng. A. 527, 65–76 (2009). https://doi.org/10.1016/j.msea.2009.08.058

    Article  CAS  Google Scholar 

  226. Foroughi, M.R., Karbasi, S., Ebrahimi-Kahrizsangi, R.: Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. J. Porous Mater. 19, 667–675 (2012). https://doi.org/10.1007/s10934-011-9518-1

    Article  CAS  Google Scholar 

  227. Mezahi, F.Z., Oudadesse, H., Harabi, A., Gal, Y.: Effect of ZrO2, TiO2, and Al2O3 Additions on process and kinetics of bonelike apatite formation on sintered natural hydroxyapatite surfaces. Int. J. Appl. Ceram. Technol. 9, 529–540 (2012). https://doi.org/10.1111/j.1744-7402.2011.02742.x

    Article  CAS  Google Scholar 

  228. Gopi, D., Shinyjoy, E., Sekar, M., Surendiran, M., Kavitha, L., Sampath Kumar, T.S.: Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method. Corros. Sci. 73, 321–330 (2013). https://doi.org/10.1016/j.corsci.2013.04.021

    Article  CAS  Google Scholar 

  229. Chang, C., Peng, N., He, M., Teramoto, Y., Nishio, Y., Zhang, L.: Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr. Polym. 91, 7–13 (2013). https://doi.org/10.1016/j.carbpol.2012.07.070

    Article  CAS  Google Scholar 

  230. Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Moghaddam, M.R.N., Alias, Y.: Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon N. Y. 69, 32–45 (2014). https://doi.org/10.1016/j.carbon.2013.11.054

    Article  CAS  Google Scholar 

  231. Kim, H.-L., Jung, G.-Y., Yoon, J.-H., Han, J.-S., Park, Y.-J., Kim, D.-G., Zhang, M., Kim, D.-J.: Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 54, 20–25 (2015). https://doi.org/10.1016/j.msec.2015.04.033

    Article  CAS  Google Scholar 

  232. Yazdanpanah, Z., Bahrololoom, M.E., Hashemi, B.: Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites. J. Mech. Behav. Biomed. Mater. 41, 36–42 (2015). https://doi.org/10.1016/j.jmbbm.2014.09.021

    Article  CAS  Google Scholar 

  233. Harabi, A., Harabi, E., Chehlatt, S., Zouai, S., Karboua, N.-E., Foughali, L.: Effect of B 2 O 3 on mechanical properties of porous natural hydroxyapatite derived from cortical bovine bones sintered at 1,050°C. Desalin. Water Treat. 57, 5303–5309 (2016). https://doi.org/10.1080/19443994.2015.1021997

    Article  CAS  Google Scholar 

  234. Heidari, F., Razavi, M., Bahrololoom, M.E., Yazdimamaghani, M., Tahriri, M., Kotturi, H., Tayebi, L.: Evaluation of the mechanical properties, in vitro biodegradability and cytocompatibility of natural chitosan/hydroxyapatite/nano-Fe3O4 composite. Ceram. Int. 44, 275–281 (2018). https://doi.org/10.1016/j.ceramint.2017.09.170

    Article  CAS  Google Scholar 

  235. Sutthi, R., Pangdaeng, S., Chindaprasirt, P., Otsuka, Y., Mutoh, Y., Laonapakul, T.: Hydroxyapatite from golden apple snail shell with calcined kaolin for biomaterial applications. Key Eng. Mater. 718, 133–138 (2016). https://doi.org/10.4028/www.scientific.net/KEM.718.133

    Article  Google Scholar 

  236. Fomin, A., Fomina, M., Koshuro, V., Rodionov, I., Zakharevich, A., Skaptsov, A.: Structure and mechanical properties of hydroxyapatite coatings produced on titanium using plasma spraying with induction preheating. Ceram. Int. 43, 11189–11196 (2017). https://doi.org/10.1016/j.ceramint.2017.05.168

    Article  CAS  Google Scholar 

  237. Zhao, X., Zhang, L., Wang, X., Yang, J., He, F., Wang, Y.: Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites. Ceram. Int. 44, 8322–8333 (2018). https://doi.org/10.1016/j.ceramint.2018.02.020

    Article  CAS  Google Scholar 

  238. Meng, Y., Qiang, W.J., Pang, J.Q.: Preparation and characterization of mechanical properties of hydroxyapatite/carbon nanotube laminated ceramic composites consolidated by spark plasma sintering. Mater. Sci. Forum. 913, 466–472 (2018). https://doi.org/10.4028/www.scientific.net/MSF.913.466

    Article  Google Scholar 

  239. Heidari, F., Razavi, M., Bahrololoom, M.E., Bazargan-Lari, R., Vashaee, D., Kotturi, H., Tayebi, L.: Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater. Sci. Eng. C. 65, 338–344 (2016). https://doi.org/10.1016/j.msec.2016.04.039

    Article  CAS  Google Scholar 

  240. Vassal, M.F., Nunes-Pereira, J., Miguel, S.P., Correia, I.J., Silva, A.P.: Microstructural, mechanical and biological properties of hydroxyapatite - CaZrO3 biocomposites. Ceram. Int. 45, 8195–8203 (2019). https://doi.org/10.1016/j.ceramint.2019.01.122

    Article  CAS  Google Scholar 

  241. Chen, P.-Y., Wang, S.-F., Chien, R.R., Tu, C.-S., Feng, K.-C., Chen, C.-S., Hung, K.-Y., Schmidt, V.H.: Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature. Ceram. Int. 45, 16226–16233 (2019). https://doi.org/10.1016/j.ceramint.2019.05.144

    Article  CAS  Google Scholar 

  242. Terrazas, C.A., Murr, L.E., Bermudez, D., Arrieta, E., Roberson, D.A., Wicker, R.B.: Microstructure and mechanical properties of Ti-6Al-4V-5% hydroxyapatite composite fabricated using electron beam powder bed fusion. J. Mater. Sci. Technol. 35, 309–321 (2019). https://doi.org/10.1016/j.jmst.2018.10.025

    Article  CAS  Google Scholar 

  243. Nie, J., Zhou, J., Huang, X., Wang, L., Liu, G., Cheng, J.: Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram. Int. 45, 13647–13655 (2019). https://doi.org/10.1016/j.ceramint.2019.04.007

    Article  CAS  Google Scholar 

  244. Vu, A.A., Robertson, S.F., Ke, D., Bandyopadhyay, A., Bose, S.: Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater. 92, 325–335 (2019). https://doi.org/10.1016/j.actbio.2019.05.020

    Article  CAS  Google Scholar 

  245. y Leon, C.A.L.: New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 76–77, 341–372 (1998). https://doi.org/10.1016/S0001-8686(98)00052-9

    Article  Google Scholar 

  246. Kuboki, Y., Takita, H., Kobayashi, D., Tsuruga, E., Inoue, M., Murata, M., Nagai, N., Dohi, Y., Ohgushi, H.: BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J. Biomed. Mater. Res. 39, 190–199 (1998). https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K

  247. Story, B.J., Wagner, W.R., Gaisser, D.M., Cook, S.D., Rust-Dawicki, A.M.: In vivo performance of a modified CSTi dental implant coating. Int. J. Oral Maxillofac. Implants. 13, 749–757 (n.d.) http://www.ncbi.nlm.nih.gov/pubmed/9857585

  248. Bohner, M.: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 31, D37–D47 (2000). https://doi.org/10.1016/S0020-1383(00)80022-4

    Article  Google Scholar 

  249. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20, 2377–2387 (2000). https://doi.org/10.1016/S0955-2219(00)00154-0

    Article  CAS  Google Scholar 

  250. Ben Ayed, F., Bouaziz, J., Bouzouita, K.: Calcination and sintering of fluorapatite under argon atmosphere. J. Alloys Compd. 322, 238–245 (2001). https://doi.org/10.1016/S0925-8388(01)01200-2

    Article  CAS  Google Scholar 

  251. Munar, M.L., Udoh, K., Ishikawa, K., Matsuya, S., Nakagawa, M.: Effects of sintering temperature over 1,300 °C on the physical and compositional properties of porous hydroxyapatite foam. Dent. Mater. J. 25, 51–58 (2006). https://doi.org/10.4012/dmj.25.51

    Article  CAS  Google Scholar 

  252. Baradaran, S., Moghaddam, E., Nasiri-Tabrizi, B., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Alias, Y.: Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater. Sci. Eng. C. 49, 656–668 (2015). https://doi.org/10.1016/j.msec.2015.01.050

    Article  CAS  Google Scholar 

  253. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  254. Burke, K.: Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012). https://doi.org/10.1063/1.4704546

    Article  CAS  Google Scholar 

  255. Löwen, H.: Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys. Condens. Matter. 14, 11897–11905 (2002). https://doi.org/10.1088/0953-8984/14/46/301

    Article  Google Scholar 

  256. Becke, A.D.: Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014). https://doi.org/10.1063/1.4869598

    Article  CAS  Google Scholar 

  257. Maitra, N.T.: Perspective: fundamental aspects of time-dependent density functional theory. J. Chem. Phys. 144, 220901 (2016). https://doi.org/10.1063/1.4953039

    Article  CAS  Google Scholar 

  258. Tamm, T., Peld, M.: Computational study of cation substitutions in apatites. J. Solid State Chem. 179, 1581–1587 (2006). https://doi.org/10.1016/j.jssc.2006.02.012

    Article  CAS  Google Scholar 

  259. de Leeuw, N.H.: Local ordering of hydroxy groups in hydroxyapatite. Chem. Commun. 1646–1647 (2001). https://doi.org/10.1039/b104850n

  260. Zilm, M.E., Chen, L., Sharma, V., McDannald, A., Jain, M., Ramprasad, R., Wei, M.: Hydroxyapatite substituted by transition metals: experiment and theory. Phys. Chem. Chem. Phys. 18, 16457–16465 (2016). https://doi.org/10.1039/C6CP00474A

    Article  CAS  Google Scholar 

  261. Mollaei, Z., Kermani, F., Moosavi, F., Kargozar, S., Khakhi, J.V., Mollazadeh, S.: In silico study and experimental evaluation of the solution combustion synthesized manganese oxide (MnO2) nanoparticles. Ceram. Int. 48, 1659–1672 (2022). https://doi.org/10.1016/j.ceramint.2021.09.245

    Article  CAS  Google Scholar 

  262. Sun, J.P., Song, Y., Wen, G.W., Wang, Y., Yang, R.: Softening of hydroxyapatite by vacancies: a first principles investigation. Mater. Sci. Eng. C. 33, 1109–1115 (2013). https://doi.org/10.1016/j.msec.2012.12.001

    Article  CAS  Google Scholar 

  263. Ren, F., Leng, Y., Xin, R., Ge, X.: Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6, 2787–2796 (2010). https://doi.org/10.1016/j.actbio.2009.12.044

    Article  CAS  Google Scholar 

  264. Ma, X., Ellis, D.E.: Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. Biomaterials. 29, 257–265 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.001

    Article  CAS  Google Scholar 

  265. Yin, S., Ellis, D.E.: First-principles investigations of Ti-substituted hydroxyapatite electronic structure. Phys. Chem. Chem. Phys. 12, 156–163 (2010). https://doi.org/10.1039/B915171K

    Article  CAS  Google Scholar 

  266. Zeglinski, J., Nolan, M., Bredol, M., Schatte, A., Tofail, S.A.M.: Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses. Phys. Chem. Chem. Phys. 14, 3435 (2012). https://doi.org/10.1039/c2cp23163h

    Article  CAS  Google Scholar 

  267. Terra, J., Dourado, E.R., Eon, J.-G., Ellis, D.E., Gonzalez, G., Rossi, A.M.: The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys. Chem. Chem. Phys. 11, 568–577 (2009). https://doi.org/10.1039/B802841A

    Article  CAS  Google Scholar 

  268. Liu, H., Cui, X., Lu, X., Liu, X., Zhang, L., Chan, T.-S.: Mechanism of Mn incorporation into hydroxyapatite: insights from SR-XRD, Raman, XAS, and DFT calculation. Chem. Geol. 579, 120354 (2021). https://doi.org/10.1016/j.chemgeo.2021.120354

    Article  CAS  Google Scholar 

  269. Kong, L., Liu, X., Lv, G., Liu, T., Zhang, P., Li, Y., Chen, B., Liao, L.: Copper adsorption using hydroxyapatite derived from bovine bone. Adv. Civ. Eng. 2022, 1–10 (2022). https://doi.org/10.1155/2022/1026129

    Article  Google Scholar 

  270. Sadetskaya, A.V., Bobrysheva, N.P., Osmolowsky, M.G., Osmolovskaya, O.M., Voznesenskiy, M.A.: Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Mater. Charact. 173, 110911 (2021). https://doi.org/10.1016/j.matchar.2021.110911

    Article  CAS  Google Scholar 

  271. Jiang, X., Zhao, Y., Wang, C., Sun, R., Tang, Y.: Effects of physico-chemical properties of ions-doped hydroxyapatite on adsorption and release performance of doxorubicin as a model anticancer drug. Mater. Chem. Phys. 276, 125440 (2022). https://doi.org/10.1016/j.matchemphys.2021.125440

    Article  CAS  Google Scholar 

  272. Wu, P.: Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials. 25, 1123–1130 (2004). https://doi.org/10.1016/S0142-9612(03)00617-3

    Article  CAS  Google Scholar 

  273. Younesi, M., Bahrololoom, M.E., Ahmadzadeh, M.: Prediction of wear behaviors of nickel free stainless steel–hydroxyapatite bio-composites using artificial neural network. Comput. Mater. Sci. 47, 645–654 (2010). https://doi.org/10.1016/j.commatsci.2009.09.019

    Article  CAS  Google Scholar 

  274. Jiang, Z., Zhang, Z., Friedrich, K.: Prediction on wear properties of polymer composites with artificial neural networks. Compos. Sci. Technol. 67, 168–176 (2007). https://doi.org/10.1016/j.compscitech.2006.07.026

    Article  CAS  Google Scholar 

  275. Zhang, Z., Barkoula, N.-M., Karger-Kocsis, J., Friedrich, K.: Artificial neural network predictions on erosive wear of polymers. Wear. 255, 708–713 (2003). https://doi.org/10.1016/S0043-1648(03)00149-2

    Article  CAS  Google Scholar 

  276. Al-Haik, M.S., Hussaini, M.Y., Garmestani, H.: Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. Int. J. Plast. 22, 1367–1392 (2006). https://doi.org/10.1016/j.ijplas.2005.09.002

    Article  CAS  Google Scholar 

  277. Trebar, M., Susteric, Z., Lotric, U.: Predicting mechanical properties of elastomers with neural networks. Polymer (Guildf). 48, 5340–5347 (2007). https://doi.org/10.1016/j.polymer.2007.07.030

    Article  CAS  Google Scholar 

  278. Mahdavi Jafari, M., Khayati, G.R.: Prediction of hydroxyapatite crystallite size prepared by sol–gel route: gene expression programming approach. J. Sol-Gel Sci. Technol. 86, 112–125 (2018). https://doi.org/10.1007/s10971-018-4601-6

    Article  CAS  Google Scholar 

  279. Coşkun, M.İ., Karahan, İ.H.: Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys. J. Alloys Compd. 745, 840–848 (2018). https://doi.org/10.1016/j.jallcom.2018.02.253

    Article  CAS  Google Scholar 

  280. Vecsei, P.M., Choo, K., Chang, J., Neupert, T.: Neural network based classification of crystal symmetries from X-ray diffraction patterns. Phys. Rev. B. 99, 245120 (2019). https://doi.org/10.1103/PhysRevB.99.245120

    Article  CAS  Google Scholar 

  281. Oviedo, F., Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N.T.P., Ramasamy, S., DeCost, B.L., Tian, S.I.P., Romano, G., Gilad Kusne, A., Buonassisi, T.: Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. Npj Comput. Mater. 5, 60 (2019). https://doi.org/10.1038/s41524-019-0196-x

    Article  CAS  Google Scholar 

  282. Hartnett, T.Q., Ayyasamy, M.V., Balachandran, P.V.: Prediction of new iodine-containing apatites using machine learning and density functional theory. MRS Commun. 9, 882–890 (2019). https://doi.org/10.1557/mrc.2019.103

    Article  CAS  Google Scholar 

  283. Okafor, E., Obada, D.O., Dodoo-Arhin, D.: Ensemble learning prediction of transmittance at different wavenumbers in natural hydroxyapatite. Sci. African. 9, e00516 (2020). https://doi.org/10.1016/j.sciaf.2020.e00516

    Article  Google Scholar 

  284. Okafor, E., Obada, D.O., Ibrahim, Y., Dodoo-Arhin, D.: Prediction of the reflection intensity of natural hydroxyapatite using generalized linear model and ensemble learning methods. Eng. Reports. 3, (2021). https://doi.org/10.1002/eng2.12292

  285. Polikar, R.: Ensemble learning. In: Ensemble Mach Learn, pp. 1–34. Springer, Boston, MA, USA (2012)

    Google Scholar 

  286. Sharma, S., Kumar, P., Chandra, R., Setia, P.: Prediction of properties of silica nanoparticle/hydroxyapatite fiber reinforced Bis-GMA/TEGDMA composites using molecular dynamics. Comput. Mater. Sci. 158, 32–41 (2019). https://doi.org/10.1016/j.commatsci.2018.11.016

    Article  CAS  Google Scholar 

  287. Pandele, A.M., Constantinescu, A., Radu, I.C., Miculescu, F., Ioan Voicu, S., Ciocan, L.T.: Synthesis and characterization of PLA-micro-structured hydroxyapatite composite films. Materials (Basel). 13, 274 (2020). https://doi.org/10.3390/ma13020274

    Article  CAS  Google Scholar 

  288. Agbeboh, N.I., Oladele, I.O., Daramola, O.O., Adediran, A.A., Olasukanmi, O.O., Tanimola, M.O.: Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon. 6, e03765 (2020). https://doi.org/10.1016/j.heliyon.2020.e03765

    Article  CAS  Google Scholar 

  289. Nedaipour, F., Bagheri, H., Mohammadi, S.: “Polylactic acid-polyethylene glycol-hydroxyapatite composite” an efficient composition for interference screws. Nanocomposites. 6, 99–110 (2020). https://doi.org/10.1080/20550324.2020.1794688

    Article  CAS  Google Scholar 

  290. Wibisono, Y., Rafianto, V., Alvianto, D., Bagus Hermanto, M.: Prediction of size reduction by batch ball milling process for crab shell powder prior hydroxyapatite conversion, IOP Conf. Ser. Earth Environ. Sci. 542, 012011 (2020). https://doi.org/10.1088/1755-1315/542/1/012011

    Article  Google Scholar 

  291. Bi, Y., Lin, Z., Deng, S.: Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater. Sci. Eng. C. 100, 576–583 (2019). https://doi.org/10.1016/j.msec.2019.03.040

    Article  CAS  Google Scholar 

  292. Soriano-Souza, C., Valiense, H., Mavropoulos, E., Martinez-Zelaya, V., Costa, A.M., Alves, A.T., Longuinho, M., Resende, R., Mourão, C., Granjeiro, J., Rocha-Leao, M.H., Rossi, A., Calasans-Maia, M.: Doxycycline containing hydroxyapatite ceramic microspheres as a bone-targeting drug delivery system. J. Biomed. Mater. Res. Part B Appl. Biomater. 108, 1351–1362 (2020). https://doi.org/10.1002/jbm.b.34484

    Article  CAS  Google Scholar 

  293. de Oliveira, P.G.F.P., et al.: Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and <scp>micro-CT</scp> parameters. An in vivo study in diabetic rats. J. Biomed. Mater. Res. Part A. 109, 682–694 (2021). https://doi.org/10.1002/jbm.a.37052

    Article  CAS  Google Scholar 

  294. Łukaszewska-Kuska, M., Krawczyk, P., Martyla, A., Hedzelek, W., Dorocka-Bobkowska, B.: Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: physical and chemical considerations. Adv. Clin. Exp. Med. 27, 1055–1059 (2018). https://doi.org/10.17219/acem/69084

    Article  Google Scholar 

  295. Ergul, N.M., Unal, S., Kartal, I., Kalkandelen, C., Ekren, N., Kilic, O., Chi-Chang, L., Gunduz, O.: 3D printing of chitosan/ poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym. Test. 79, 106006 (2019). https://doi.org/10.1016/j.polymertesting.2019.106006

    Article  CAS  Google Scholar 

  296. Shi, D., Shen, J., Zhang, Z., Shi, C., Chen, M., Gu, Y., Liu, Y.: Preparation and properties of dopamine-modified alginate/chitosan–hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. Part A. 107(8), 1615–1627 (2019). https://doi.org/10.1002/jbm.a.36678

    Article  CAS  Google Scholar 

  297. Rublenko, M.V., Chemerovskiy, V.A., Andriiets, V.G., Ulyanchich, N.V., Kolomiets, V.V., Koryak, A.S.: Evaluation of usage of silicon-doped hydroxyapatite ceramics for treatment of fragmented bone fractures in dogs. Sci. Messenger LNU Vet. Med. Biotechnol. 22, 29–37 (2020). https://doi.org/10.32718/nvlvet9905

    Article  Google Scholar 

  298. Uwagie-Ero, E., Awasum, C., Kadima, K., Adeyanju, J.: An evaluation of the effect of bone morphogenetic protein-2 in a hydroxyapatite carrier on the rate of cortical restoration of large bone defects using the dog ulna model. Sokoto J. Vet. Sci. 14, 53 (2015). https://doi.org/10.4314/sokjvs.v14i2.7

    Article  Google Scholar 

  299. Gaddam, V., Podarala, V., Rayaduram Venkata, S.K., Mukku, S.L., Devalam, R., Kundu, B.: Multi-ion-doped nano-hydroxyapatite-coated titanium intramedullary pins for long bone fracture repair in dogs—Clinical evaluation. J. Biomed. Mater. Res. Part B Appl. Biomater. 110, 806–816 (2022). https://doi.org/10.1002/jbm.b.34960

    Article  CAS  Google Scholar 

  300. Coutinho, T.C., Tardioli, P.W., Farinas, C.S.: Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Appl. Biochem. Biotechnol. 190, 270–292 (2020). https://doi.org/10.1007/s12010-019-03116-9

    Article  CAS  Google Scholar 

  301. Konietzny, U., Greiner, R.: Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol. 37, 791–812 (2002). https://doi.org/10.1046/j.1365-2621.2002.00617.x

    Article  CAS  Google Scholar 

  302. Akpan, E.S., Dauda, M., Kuburi, L.S., Obada, D.O.: Box-Behnken experimental design for the process optimization of catfish bones derived hydroxyapatite: a pedagogical approach. Mater. Chem. Phys. 272, 124916 (2021). https://doi.org/10.1016/j.matchemphys.2021.124916

    Article  CAS  Google Scholar 

  303. Akpan, E.S., Dauda, M., Kuburi, L.S., Obada, D.O., Dodoo-Arhin, D.: A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results Phys. 17, 103051 (2020). https://doi.org/10.1016/j.rinp.2020.103051

    Article  Google Scholar 

  304. Akpan, E.S., Dauda, M., Kuburi, L.S., Obada, D.O.: A facile synthesis method and fracture toughness evaluation of catfish bones-derived hydroxyapatite. MRS Adv. 5, 1357–1366 (2020). https://doi.org/10.1557/adv.2020.172

    Article  CAS  Google Scholar 

  305. Akpan, E.S., Dauda, M., Kuburi, L.S., Obada, D.O., Bansod, N.D., Dodoo-Arhin, D.: Hydroxyapatite ceramics prepared from two natural sources by direct thermal conversion: from material processing to mechanical measurements. Mater. Today Proc. 38, 2291–2294 (2021). https://doi.org/10.1016/j.matpr.2020.06.391

    Article  CAS  Google Scholar 

  306. Bhattacharjee, B.N., Mishra, V.K., Rai, S.B., Parkash, O., Kumar, D.: Structure of apatite nanoparticles derived from marine animal (crab) shells: an environment-friendly and cost-effective novel approach to recycle seafood waste. ACS Omega. 4, 12753–12758 (2019). https://doi.org/10.1021/acsomega.9b00134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Tertiary Education Trust Fund (TETFund) in Nigeria for funding this study under the National Research Fund category with grant reference: NRF_SETI_HSW_00714, 2020, and the Irish Research Council for funding granted to DOO with project ID GOIPD/2021/28. The structural calculations for HAp was performed on the Kelvin cluster maintained by the Trinity Centre for High Performance Computing. This cluster was funded through grants from the Higher Education Authority through its PRTLI program. The authors also wish to acknowledge the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Obada.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obada, D.O., Osseni, S.A., Sina, H. et al. Hydroxyapatite materials-synthesis routes, mechanical behavior, theoretical insights, and artificial intelligence models: a review. J Aust Ceram Soc 59, 565–596 (2023). https://doi.org/10.1007/s41779-023-00854-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00854-2

Keywords

Navigation