Skip to main content

Advertisement

Log in

Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Solution combustion technique has been used to prepare hydroxypatite (HAp) powder from calcium nitrate, di-ammonium hydrogen phosphate and citric acid precursors. Phase evolution has been studied as a function of calcination temperatures. The crystal structure, phase purity and stiochiometry of phase have been studied by Rietveld analysis of the calcined powder. It was observed that the prepared Hap powder was phase pure and stoichiometric. The sintering behaviour and sintering kinetics of the HAp compact has been studied by dilatometer. Activation energy for sintering has been calculated from the dilatometer results. Grain boundary diffusion was found to be the dominant densification mechanism during the initial stage of sintering. The activation energy for sintering (438 kJ/mol) was found to be in excellent agreement with reported value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.

    Article  CAS  Google Scholar 

  2. H. AOKI, in “Science and medical applications of hydroxyapatite” (Japanese Association of Apatite Science, Tokyo, Japan, 1991).

    Google Scholar 

  3. W. SUCHANEK, M. YOSHIMURA, J. Mater. Res. 13 (1998) 94.

    CAS  Google Scholar 

  4. K. YAMASHITA, T. KANAZAWA, in “Inorganic phosphate materials” Kanazawa T, (Ed.) (Kodansha & Elsevier, Tokyo and Amsterdam, 1989) p. 15.

    Google Scholar 

  5. R. Z. LEGEROS, in “Calcium phosphates in oral biology and medicine” (Karger, Basel, Switzerland) 1991.

    Google Scholar 

  6. L. BERNARD, M, FRECHE, J. L. LACOUT and B. BISCANS, Powder Technol. 103 (1999) 19.

    Article  CAS  Google Scholar 

  7. LIU, T. S. CHIN, L. S. LAI, S. Y. CHIU, K. H. CHUNG, C. S. CHANG and M. T. LIU, Ceram. Int. 23 (1997) 19.

    Article  Google Scholar 

  8. D-M. LIU, T. TROCZYNSKI and W. J. T. SENG, Biomaterials 22 (2001) 1721.

    Article  CAS  Google Scholar 

  9. D.-M. LIU, Q. YANG, T. TROCZYNSKI and W. J. TSENG, Biomaterials 23 (2002) 1679.

    Article  CAS  Google Scholar 

  10. G. K. LIM, J. WANG, S. C. NG, C. H. CHEW and L. M. GAN, Biomaterials 18 (1997) 1433.

    Article  CAS  Google Scholar 

  11. K. C. B. YEONG, J. WANG and S. C. NG, Biomaterials 22 (2001) 2705.

    Article  CAS  Google Scholar 

  12. W. L. SUCHANEK, P. SHUK, K. BYRAPPA, R. E. RIMAN, K. S. TENHUISEN and V. F. JANAS, Biomaterials 23 (2002) 699.

    Article  CAS  Google Scholar 

  13. D. A. FUMO, M. R. MORELLI and A. M. SEGADAES, Mater. Res. Bull 31 (1996) 1243.

    Article  CAS  Google Scholar 

  14. T. YE, Z. GUIWEN, Mater. Res. Bull. 32 (1997) 501.

    Article  Google Scholar 

  15. D. A. FUMO, J. R. JURADO, A. M. SEGADAES and J. R. FRADE, Mater. Res. Bull. 32 (1997) 1459.

    Article  CAS  Google Scholar 

  16. R. E. JUóREZ, D. G. LAMAS, G. E. LASCALEA, D. E. WALSOE and N. E. RECA, J. Eur. Ceram. Soc. 20 (2000) 133.

    Article  Google Scholar 

  17. H. TAGUCHI, S. YAMADA, M. NAGAO, Y. ICHIKAWA, K. TABATA, Mater. Res. Bull. 37 (2002) 69.

    Article  CAS  Google Scholar 

  18. R. K. SELVAN, C. O. SUGUSTIN, L. J. BERCHMANS and R. SARASWATHI, Mater. Res. Bull. 38 (2003) 41.

    Article  CAS  Google Scholar 

  19. J. HUANG, H. ZHUANG, W. L. LI, Mater. Res. Bull. 38 (2003) 149.

    Article  CAS  Google Scholar 

  20. M. MUTHURAMAN, K. C. PATIL, Mater. Res. Bull. 33 (1998) 655.

    Article  CAS  Google Scholar 

  21. K. ADHIKARY, M. TAKAHASHI and SH. KIKKAWA, Mater. Res. Bull. 33 (1998) 1845.

    Article  CAS  Google Scholar 

  22. R. SUKUMAR, W. LIWU, S. WOLFGANG and A. FRITZ, Mater. Lett. 39 (1999) 138.

    Article  Google Scholar 

  23. H. K. VARMA, S. N. KALKURA and R. SIVAKUMAR, Ceram. Int. 24 (1998) 467.

    Article  CAS  Google Scholar 

  24. A. CUNEYT TAS, J. Eur. Ceram. Soc. 20 (2000) 2389.

    Article  Google Scholar 

  25. Y. HAN, S. LI, X. WANG and X. CHEN, Mater. Res. Bull. 39 (2004) 25.

    Article  CAS  Google Scholar 

  26. MAUD stands for Material Analysis Using Diffraction. It is based on the RITA/RISTA method by H.-R. WENK, S. MATTHIES and L. LUTTEROTTI, BERKELEY, University of Claifornia, Version 1.999 (3rd December 2003).

  27. H. KLUG, L. E. ALEXANDER, in “X-ray diffraction procedures for polycrystalline and amorphous materials” (John Wiley and Sons, New York, 1974) p. 618–708.

    Google Scholar 

  28. K. SUDARSANAN and R. A. YOUNG, Acta. Crystallogr. B25 (1969) 1534.

    Google Scholar 

  29. R. M. WILSON and J. C. ELLIOTT AND S.E.P. DOWKER, Am. Mineral. 84 (1999) 1406.

    CAS  Google Scholar 

  30. G. R. FISCHER, P. BARDHAN and J. E. GEIGER, J. Mater. Sci. Lett. 2 (1983) 577.

    Article  CAS  Google Scholar 

  31. S. NAKAMURA, R. OTSUKA, H. OAKI, M. AKAO, N. MIURA and T AMAMOTO, Thermochim. Acta. 165 (1990) 57.

    Article  CAS  Google Scholar 

  32. S. RAYNAUD, E. CHAMPION and D. BERNACHE-ASSOLLANT, Biomaterials 23 (2002) 1073.

    Article  CAS  Google Scholar 

  33. H. Y. JUANG and M. H. HON, Biomaterials 17 (1996) 2059.

    Article  CAS  Google Scholar 

  34. F. TIETZ, F. J. DIAS, D. SIMWONIS and D. STOVER, J. Euro. Ceram. Soc. 20 (2000) 1023.

    Article  CAS  Google Scholar 

  35. W. S. YOUNG and I. B. CUTLER, J. Am. Ceram. Soc. 53 (1970) 659.

    CAS  Google Scholar 

  36. V. A. IVENSEN, in “Densification of metal powders during sintering” Consultants Bureau, New York, 1973.

    Google Scholar 

  37. S. BAILLIEZ and A. NZIHOU, Chem. Eng. J. 98 (2004) 141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swadesh K. Pratihar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratihar, S.K., Garg, M., Mehra, S. et al. Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique. J Mater Sci: Mater Med 17, 501–507 (2006). https://doi.org/10.1007/s10856-006-8932-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-8932-4

Keywords

Navigation