Skip to main content
Log in

Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline hydroxyapatite (HAP) particles were synthesized at room temperature using reverse microemulsions, in which cyclohexane was used as the organic phase, mixed surfactant with TX-100 and 1- pentanol, and CaCl2 solution as aqueous phase. The reactor systems with aqueous/organic volumetric ratios 1:10, 1:5, 2:5, and 1:2 were carefully selected for the microemulsion processing by the pseudo-ternary phase diagram and the electric conductivity measurement of the emulsion. The as-obtained HAP nanoparticles with carbonate substitution and broadening X-ray diffraction (XRD) traces were similar to the fine powder of human bone, despite of the aqueous/organic volumetric ratio in the emulsion. No obvious other’s phase occurred after as-obtained particles calcined under different temperature till 700 °C. In the emulsion-derived precursors, the HAP particles based on spherical morphology were prepared into the size between 15 ∼ 30 nm as a low volumetric ratio of 1:10 or 1:5 was applied. As the volumetric ratio increased to 2:5, the HAP particles with rod-like shape of (140∼280) × (10∼80) nm were formed. Practical implication of the results is that the nanocrystalline bone-like hydroxyapatite can be obtained via the emulsion processing at room temperature without further calcinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aoki H (1994) In: Medical application of hydroxyapatite. IShiyaku EuroAmerica Inc., Tokyo, St.Loui p 10

  2. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  3. Suchanek W, Yoshimura M (1998) J Mater Res 13:765

    Article  Google Scholar 

  4. Takagi O, Kuramoto N, Ozawa M (2004) Ceram Int 30:139

    Article  CAS  Google Scholar 

  5. Benmoussa A, Mikou M, Lacout JL, Siouffi AM (1995) J Chromatogr A 694:486

    Article  CAS  Google Scholar 

  6. Jang KH, Song KB, Kim JS, Kim CH, Chung BH, Rhee SK (2000) Bioprocess Biosyst Eng 23:89

    CAS  Google Scholar 

  7. Lange FF (1989) J Am Ceram Soc 72:3

    Article  CAS  Google Scholar 

  8. Ruys AJ, Wei M, Sorrelli CC, Dickson MR, Brandwood A, Milthorpe BK (1995) Biomaterials 16:409

    Article  CAS  Google Scholar 

  9. Sonoda K, Furuzono T, Walsh D (2002) Solid State Ionics 151:32

    Article  Google Scholar 

  10. Zhao F, Graysona WL, Ma T, Bunnellb B, Lu WW (2006) Biomaterials 27:1859

    Article  CAS  Google Scholar 

  11. Sun JS, Wu YH, Lin FH (2005) Biomaterials 26:3953

    Article  CAS  Google Scholar 

  12. Kim HW, Kim HE, Salih V (2005) Biomaterials 26:5221

    Article  CAS  Google Scholar 

  13. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

  14. Rao RR, Roopa HN, Kannan TS (1997) J Mater Sci Mater Med 8:511

    Article  CAS  Google Scholar 

  15. Tas AC, Korkusuz F, Timicin M, Akkas N (1997) J Mater Sci Mater Med 8:91

    Article  CAS  Google Scholar 

  16. Rhee SH, Tanaka J (1998) J Am Ceram Soc 81:3029

    Article  CAS  Google Scholar 

  17. Wang F, Li MS, Lu YP, Qi YX (2005) Mater Lett 59:916

    Article  CAS  Google Scholar 

  18. Ioku K, Kawachi G, Sasaki S (2006) J Mater Sci 41:1341. doi:10.1007/s10853-006-7338-5

    Article  CAS  Google Scholar 

  19. Lim GK, Wang J, Ng SC, Gan LM (1996) Mater Lett 28:431

    Article  CAS  Google Scholar 

  20. Koumoulidis GC, Katsoulds AP (2003) J Colloid Interface Sci 259:254

    Article  CAS  Google Scholar 

  21. Bose S, Susanta KS (2003) Chem Mater 15:4464

    Article  CAS  Google Scholar 

  22. Chen CW, Riman RE, Techuisen KS, Brown K (2004) J Cryst Growth 270:615

    Article  CAS  Google Scholar 

  23. Guo GS, Sun YX, Wang ZH, Guo HY (2005) Ceram Int 31:869

    Article  CAS  Google Scholar 

  24. Qi L, Ma JM, Cheng HM, Zhao ZG (1997) J Mater Lett 16:1779

    Article  CAS  Google Scholar 

  25. Lam AC, Schechter RS (1987) J Colloid Interface Sci 120:42

    Article  CAS  Google Scholar 

  26. Jillavenkatesa A, Condrate RA Sr (1998) J Mater Sci 33:4111. 10.1023/A:1004436732282doi:10.1023/A:1004436732282

  27. Zhan YJ, Zheng CL, Liu YK, Wang GH (2003) Mater Lett 57:3265

    Article  CAS  Google Scholar 

  28. Luo Q, Zhao XH, Zhou G (2004) Chem J Chinese U 25:1085

    CAS  Google Scholar 

  29. Lim GK, Wang J, Ng SC, Chew CH, Gan LM (1997) Biomaterials 18:1433

    Article  CAS  Google Scholar 

  30. Lai C, Tang SQ, Wang YJ, Wei K (2005) Mater Lett 59:210

    Article  CAS  Google Scholar 

  31. Layrolle P, Ito A, Tateishi T (1998) J Am Ceram Soc 81:1421

    Article  CAS  Google Scholar 

  32. Kensaku S, Tsutomu F, Dominic W, Sato K, Tanaka J (2002) Solid State Ionics 151:321

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the national key project program of China (No.1999054306) and program of ministry of science and technology in China (2001AA625050) to Pro. Changren Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhu, M., Li, L. et al. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J Mater Sci 43, 384–389 (2008). https://doi.org/10.1007/s10853-007-2182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2182-9

Keywords

Navigation