Skip to main content
Log in

Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

The sintering behaviour of powders of two calcium phosphates, namely hydroxyapatite (HA) and dicalcium phosphate (DCP), were studied at various temperatures and in various environments. The density, flexural strength and Knoop hardness of HA sintered in air for 4 h initially increased with the sintering temperature, reaching maxima at around 1150°C, and then decreased due to decomposition of HA into tri- (TCP) and tetracalcium phosphates. Sintering in vacuum caused decomposition of HA at lower temperatures, and consequently the mechanical properties were poorer than those of HA sintered in air. The densification and mechanical properties of DCP sintered in air and vacuum showed similar behaviour to those of HA. In air DCP underwent phase transformation from γ- to β- and to α-phases. In vacuum DCP started to decompose into tricalcium phosphate at 1000°C. To reduce dehydroxylation, HA powder was sintered in moisture at various temperatures up to 1350°C and X-ray diffraction study did not indicate any decomposition at the highest sintering temperature. The density, flexural strength and hardness of HA sintered in moisture increased with the sintering temperature and eventually reached plateaux at about 1300°C, but below 1200°C they were lower than those of HA sintered in air at corresponding temperatures. Thus, it is seen that dehydroxylation did not hinder sintering of HA. On the other hand, decomposition obstructed sintering of both HA and DCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R.VAN WAZER, “Phosphourous and Its Compounds”, Vols I and II (Interscience, New York, 1958).

    Google Scholar 

  2. J. S. HANKER and B. L. GIAMMARA, Science 242 (1988) 885.

    Google Scholar 

  3. M. JARCHO, Clin. Orthopaed. Related Res. 157 (1981) 259.

    Google Scholar 

  4. C. LAVERNIA and J. M. SCHOENUNG, Ceram. Buli. 70 (1991) 95.

    Google Scholar 

  5. H. DENISSEN, C. MANGANO and G. VENINI, “Hydroxylapatite Implants” (Piccin Nuova Libraria, SPA, Padua, 1983) p. 19.

    Google Scholar 

  6. M. WINTER, P. GRISS, K.DE GROOT, H. TAGAI, G. HEIMKE, H. J. A. V. DIJK and K. SAWAI, Biomaterials 2 (1981) 159.

    Google Scholar 

  7. R. E. HOLMES and S. M. ROSER, Int. J. Oral Maxillofae. Surg. 16 (1987) 718.

    Google Scholar 

  8. J. W. FRAME, P. G. J. ROUT and R. M. BROWNE, Int. J. Oral. Maxillofae.Surg. 18 (1989) 142.

    Google Scholar 

  9. C. CHANG, V. J. MATUKAS and J. E. LEMONS, Int. J. Oral Maxillofae Surg. 41 (1983) 729.

    Google Scholar 

  10. G. L.DE LANGE, C.DE PUTTER, K.DE GROOT and F. H. BURGER. J. Dent. Res. 68 (1989) 509.

    Google Scholar 

  11. S.-Y. CHAO and C. K. POON, J. Oral Maxillofac. Surg. 45 (1987) 339.

    Google Scholar 

  12. D. G. PAGE and D. LASKIN, J. Oral Maxillofac. Surg. 45 (1987) 356.

    Google Scholar 

  13. K.DE GROOT, Biomaterials 1 (1980) 47.

    Google Scholar 

  14. J. C. TROMBE and G. MONTEL, J. Inorg. Nucl. Chem. 40 (1978) 15.

    Google Scholar 

  15. T. KIJIMA and M. TSUTSUMI, J. Amer. Ceram. Soc. 62 (1979) 455.

    Google Scholar 

  16. W.VAN RAEMDONCK, P. DUCHEYNE and P.DE MEESTER, in “Metal and Ceramic Biomaterials”, Vol. 2, edited by P. DUCHEYNE and W. HASTING (CRC Press, Boca Raton, Florida, 1984) p. 149.

    Google Scholar 

  17. H. NEWESELY, J. Oral Rehab. 4 (1977) 97.

    Google Scholar 

  18. K. YAMASHITA, H. OWADA, H. NAKAGAWA, T. UMEGAKE and T. KANAZAWA, J. Amer. Ceram. Soc. 69 (1986) 590.

    Google Scholar 

  19. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  20. A. GEE and V. R. DEITZ, Analyt. Chem. 25 (1953) 1320.

    Google Scholar 

  21. Military Standard MIL-STD-1942 (MR): “Flexural Strength of High Performance Ceramics at Ambient Temperature” (Department of the Army, Washington, DC, 1983).

    Google Scholar 

  22. P. W. RANBY, D. H. MASH and S. T. HENDERSON, Brit. J. Appl. Phys. 8 (1957) S18.

    Google Scholar 

  23. W. L. HILL, G. T. FAUST and D. S. REYNOLDS, Amer. J. Sci. 242 (1944) 457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P.E., Chaki, T.K. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci: Mater Med 4, 150–158 (1993). https://doi.org/10.1007/BF00120384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120384

Keywords

Navigation