Skip to main content
Log in

Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2023

This article has been updated

Abstract

The goal of tissue engineering is to replace or regenerate damaged tissue. Scaffold fabrications and biomaterial selections are crucial factors for artificial tissue and bone tissue engineering, which are important due to the limited availability of tissue donors. This paper reviews the scaffold design considerations, manufacturing methods, and biomaterials for bone tissue engineering, and discusses current challenges and future perspectives. Scaffolds are required to have non-hazardous properties such as biocompatibility and biodegradability for the human body, and the necessary mechanical properties to support body weight, or to perform other roles, depending on the type of tissue. Moreover, scaffold structures such as porosity, pore size, and pore shape should be optimized to achieve cell viability and proliferation. Many conventional fabrication methods including thermally induced phase separation, emulsion freeze-drying, solvent casting, gas forming, and electrospinning have been studied and developed, but 3D printing is more suitable for bone tissue engineering because of its ability to manufacture complicated structures. Biomaterials can be divided into four categories: polymer, ceramic, metal, and composites. Composites blend two or more biomaterials to achieve desired properties for matching individual patient conditions. Finding a balance between fabrication method and biomaterial selection, in order to match properties between the scaffold and the target tissue, will be key to the field of bone tissue engineering in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Viola, J., Lal, B., & Grad, O. (2003). The emergence of tissue engineering as a research field. National Science Foundation.

  2. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529

    Article  Google Scholar 

  3. Birla, R. (2014). Introduction to tissue engineering: Applications and challenges. Wiley.

  4. Shafiee, A., & Atala, A. (2017). Tissue engineering: Toward a new era of medicine. Annual Review of Medicine, 68, 29–40. https://doi.org/10.1146/annurev-med-102715-092331

    Article  Google Scholar 

  5. Lanza, R., Langer, R., Vacanti, J. P., & Atala, A. (2020). Principles of tissue engineering. Academic Press, an imprint of Elsevier.

  6. Kim, B. S., Kwon, Y. W., Kong, J.-S., Park, G. T., Gao, G., Han, W., Kim, M.-B., Lee, H., Kim, J. H., & Cho, D.-W. (2018). 3d cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials, 168, 38–53.

    Article  Google Scholar 

  7. Liu, Y., Zhou, G., & Cao, Y. (2017). Recent progress in cartilage tissue engineering-our experience and future directions. Engineering, 3(1), 28–35.

    Article  Google Scholar 

  8. Zhai, Q., Dong, Z., Wang, W., Li, B., & Jin, Y. (2019). Dental stem cell and dental tissue regeneration. Frontiers of Medicine, 13(2), 152–159.

    Article  Google Scholar 

  9. Liu, N., Ye, X., Yao, B., Zhao, M., Wu, P., Liu, G., Zhuang, D., Jiang, H., Chen, X., He, Y., et al. (2021). Advances in 3d bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 6(5), 1388–1401.

    Article  Google Scholar 

  10. Health Resources & Services Administration (HRSA): Organ Donation Statistics. Retrieved 01.09.2022. https://www.organdonor.gov/learn/organ-donation-statistics

  11. Sodhi, H., & Panitch, A. (2021). Glycosaminoglycans in tissue engineering: A review. Biomolecules, 11(1), 29.

    Article  Google Scholar 

  12. Biswal, T. (2021). Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings, 41, 397–402.

    Google Scholar 

  13. Kim, B. W. (2018). Clinical regenerative medicine in urology. Springer.

  14. Gopinathan, J., & Noh, I. (2018). Recent trends in bioinks for 3d printing. Biomaterials Research, 22(1), 1–15.

    Article  Google Scholar 

  15. Wang, W., Zhang, B., Li, M., Li, J., Zhang, C., Han, Y., Wang, L., Wang, K., Zhou, C., Liu, L., et al. (2021). 3d printing of pla/n-ha composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites Part B: Engineering, 224, 109192.

    Article  Google Scholar 

  16. Hussey, G. S., Dziki, J. L., & Badylak, S. F. (2018). Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 3(7), 159–173.

    Article  Google Scholar 

  17. Williams, D. F. (2019). Challenges with the development of biomaterials for sustainable tissue engineering. Frontiers in bioengineering and biotechnology, 7, 127.

    Article  Google Scholar 

  18. Laschke, M. W., & Menger, M. D. (2017). Life is 3d: Boosting spheroid function for tissue engineering. Trends in Biotechnology, 35(2), 133–144.

    Article  Google Scholar 

  19. Duy Nguyen, B. T., Nguyen Thi, H. Y., Nguyen Thi, B. P., Kang, D.-K., & Kim, J. F. (2021). The roles of membrane technology in artificial organs: Current challenges and perspectives. Membranes, 11(4), 239.

    Article  Google Scholar 

  20. Rao, S. H., Harini, B., Shadamarshan, R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International Journal o Biological Macromolecules, 110, 88–96.

    Article  Google Scholar 

  21. Bala, Y., & Seeman, E. (2015). Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcified Tissue International, 97(3), 308–326.

    Article  Google Scholar 

  22. Roddy, E., DeBaun, M. R., Daoud-Gray, A., Yang, Y. P., & Gardner, M. J. (2018). Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. European Journal of Orthopaedic Surgery & Traumatology, 28(3), 351–362.

    Article  Google Scholar 

  23. Soundarya, S. P., Sanjay, V., Menon, A. H., Dhivya, S., & Selvamurugan, N. (2018). Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules, 110, 74–87.

    Article  Google Scholar 

  24. Black, C. R., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R. S., & Oreffo, R. O. (2015). Bone tissue engineering. Current Molecular Biology Reports, 1(3), 132–140.

    Article  Google Scholar 

  25. Singh, D., Singh, D., & Han, S. S. (2016). 3d printing of scaffold for cells delivery: Advances in skin tissue engineering. Polymers, 8(1), 19.

    Article  Google Scholar 

  26. Madrid, A. P. M., Vrech, S. M., Sanchez, M. A., & Rodriguez, A. P. (2019). Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering: C, 100, 631–644.

    Article  Google Scholar 

  27. Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2018). 3d bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278–314.

    Article  Google Scholar 

  28. Sarker, B., Li, W., Zheng, K., Detsch, R., & Boccaccini, A. R. (2016). Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. ACS Biomaterials Science & Engineering, 2(12), 2240–2254.

    Article  Google Scholar 

  29. Jammalamadaka, U., & Tappa, K. (2018). Recent advances in biomaterials for 3d printing and tissue engineering. Journal of Functional Biomaterials, 9(1), 22.

    Article  Google Scholar 

  30. Hussein, K. H., Park, K.-M., Kang, K.-S., & Woo, H.-M. (2016). Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Materials Science and Engineering: C, 67, 766–778.

    Article  Google Scholar 

  31. Hou, Y., Wang, X., Yang, J., Zhu, R., Zhang, Z., & Li, Y. (2018). Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. Journal of Biomedical Materials Research Part A, 106(5), 1288–1298.

    Article  Google Scholar 

  32. Gabbai-Armelin, P. R., Souza, M., Kido, H. W., Tim, C. R., Bossini, P. S., Fernandes, K. R., Magri, A. M. P., Parizotto, N. A., Fernandes, K. P. S., Mesquita-Ferrari, R. A., et al. (2017). Characterization and biocompatibility of a fibrous glassy scaffold. Journal of Tissue Engineering and Regenerative Medicine, 11(4), 1141–1151.

    Article  Google Scholar 

  33. Asghari, F., Samiei, M., Adibkia, K., Akbarzadeh, A., & Davaran, S. (2017). Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 185–192.

    Article  Google Scholar 

  34. Wheelton, A., Mace, J., Khan, S. W., & Anand, S. (2016). Biomaterials and fabrication to optimise scaffold properties for musculoskeletal tissue engineering. Current Stem Cell Research & Therapy, 11(7), 578–584.

    Article  Google Scholar 

  35. Mao, D., Li, Q., Li, D., Chen, Y., Chen, X., & Xu, X. (2018). Fabrication of 3d porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Materials & Design, 142, 1–10.

    Article  Google Scholar 

  36. Prasadh, S., & Wong, R. C. W. (2018). Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Science International, 15(2), 48–55.

    Article  Google Scholar 

  37. Qu, H., Fu, H., Han, Z., & Sun, Y. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances, 9(45), 26252–26262.

    Article  Google Scholar 

  38. Mirzaali, M. J., Schwiedrzik, J. J., Thaiwichai, S., Best, J. P., Michler, J., Zysset, P. K., & Wolfram, U. (2016). Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone, 93, 196–211.

    Article  Google Scholar 

  39. Qu, H., Zhang, W., Li, Z., Hou, L., Li, G., Fuh, J. Y., & Wu, W. (2022). Influence of thermal processing conditions on mechanical and material properties of 3d printed thin-structures using peek material. International Journal of Precision Engineering and Manufacturing, 23(6), 689–699.

    Article  Google Scholar 

  40. Kim, M.-G., Kim, Y.-M., & Han, S.-Y. (2022). Mechanical reliability prediction of foldable displays using subcritical crack growth in siloxane-based cover window by two-point bending test. International Journal of Precision Engineering and Manufacturing, 23(11), 1301–1313.

    Article  Google Scholar 

  41. Osterhoff, G., Morgan, E. F., Shefelbine, S. J., Karim, L., McNamara, L. M., & Augat, P. (2016). Bone mechanical properties and changes with osteoporosis. Injury, 47, 11–20.

    Article  Google Scholar 

  42. Lee, J., Walker, J., Natarajan, S., & Yi, S. (2019). Prediction of geometric characteristics in polycaprolactone (pcl) scaffolds produced by extrusion-based additive manufacturing technique for tissue engineering. Rapid Prototyping Journal, 6, 66.

    Google Scholar 

  43. Murphy, C. M., Haugh, M. G., & O’brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461–466.

    Article  Google Scholar 

  44. Nagarajan, N., Dupret-Bories, A., Karabulut, E., Zorlutuna, P., & Vrana, N. E. (2018). Enabling personalized implant and controllable biosystem development through 3d printing. Biotechnology Advances, 36(2), 521–533.

    Article  Google Scholar 

  45. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3d biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.

    Article  Google Scholar 

  46. Akay, G., Birch, M., & Bokhari, M. (2004). Microcellular polyhipe polymer supports osteoblast growth and bone formation in vitro. Biomaterials, 25(18), 3991–4000.

    Article  Google Scholar 

  47. Akin, F. A., Zreiqat, H., Jordan, S., Wijesundara, M. B., & Hanley, L. (2001). Preparation and analysis of macroporous tio2 films on ti surfaces for bone-tissue implants. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 57(4), 588–596.

    Article  Google Scholar 

  48. Tarafder, S., Dernell, W. S., Bandyopadhyay, A., & Bose, S. (2015). Sro-and mgo-doped microwave sintered 3d printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(3), 679–690.

    Article  Google Scholar 

  49. Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141.

    Article  Google Scholar 

  50. Cavo, M., & Scaglione, S. (2016). Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications. Materials Science and Engineering: C, 68, 872–879.

    Article  Google Scholar 

  51. Grémare, A., Guduric, V., Bareille, R., Heroguez, V., Latour, S., & L’heureux, N., Fricain, J.-C., Catros, S., Le Nihouannen, D. (2018). Characterization of printed pla scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A, 106(4), 887–894.

  52. Chiu, Y.-C., Fang, H.-Y., Hsu, T.-T., Lin, C.-Y., & Shie, M.-Y. (2017). The characteristics of mineral trioxide aggregate/polycaprolactone 3-dimensional scaffold with osteogenesis properties for tissue regeneration. Journal of Endodontics, 43(6), 923–929.

    Article  Google Scholar 

  53. Yang, F., Chen, C., Zhou, Q., Gong, Y., Li, R., Li, C., Klämpfl, F., Freund, S., Wu, X., Sun, Y., et al. (2017). Laser beam melting 3d printing of ti6al4v based porous structured dental implants: Fabrication, biocompatibility analysis and photoelastic study. Scientific Reports, 7(1), 1–12.

    Google Scholar 

  54. Pei, X., Ma, L., Zhang, B., Sun, J., Sun, Y., Fan, Y., Gou, Z., Zhou, C., & Zhang, X. (2017). Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication, 9(4), 045008.

    Article  Google Scholar 

  55. Takahashi, Y., & Tabata, Y. (2004). Effect of the fiber diameter and porosity of non-woven pet fabrics on the osteogenic differentiation of mesenchymal stem cells. Journal of Biomaterials Science, Polymer Edition, 15(1), 41–57.

    Article  Google Scholar 

  56. Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., Ma, W., Qi, W., Ren, Z., Liao, H., et al. (2020). Influence of the pore size and porosity of selective laser melted ti6al4v eli porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering: C, 106, 110289.

    Article  Google Scholar 

  57. Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., et al. (2017). Designing of pla scaffolds for bone tissue replacement fabricated by ordinary commercial 3d printer. Journal of Biological Engineering, 11(1), 1–21.

    Article  Google Scholar 

  58. Sanzana, E. S., Navarro, M., Ginebra, M.-P., Planell, J. A., Ojeda, A. C., & Montecinos, H. A. (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. Journal of Biomedical Materials Research Part A, 102(6), 1767–1773.

    Article  Google Scholar 

  59. Van Bael, S., Chai, Y. C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.-P., & Schrooten, J. (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted ti6al4v bone scaffolds. Acta Biomaterialia, 8(7), 2824–2834.

    Article  Google Scholar 

  60. Montazerian, H., Zhianmanesh, M., Davoodi, E., Milani, A., & Hoorfar, M. (2017). Longitudinal and radial permeability analysis of additively manufactured porous scaffolds: Effect of pore shape and porosity. Materials & Design, 122, 146–156.

    Article  Google Scholar 

  61. Jeong, C. G., & Hollister, S. J. (2010). Mechanical and biochemical assessments of three-dimensional poly (1, 8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Engineering Part A, 16(12), 3759–3768.

    Article  Google Scholar 

  62. Gong, B., Cui, S., Zhao, Y., Sun, Y., & Ding, Q. (2017). Strain-controlled fatigue behaviors of porous pla-based scaffolds by 3d-printing technology. Journal of Biomaterials Science, Polymer Edition, 28(18), 2196–2204.

    Article  Google Scholar 

  63. Ferlin, K. M., Prendergast, M. E., Miller, M. L., Kaplan, D. S., & Fisher, J. P. (2016). Influence of 3d printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomaterialia, 32, 161–169.

    Article  Google Scholar 

  64. Wang, Y.-F., Barrera, C. M., Dauer, E. A., Gu, W., Andreopoulos, F., & Huang, C.-Y.C. (2017). Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 65, 657–664.

    Article  Google Scholar 

  65. Minas, C., Carnelli, D., Tervoort, E., & Studart, A. R. (2016). 3d printing of emulsions and foams into hierarchical porous ceramics. Advanced Materials, 28(45), 9993–9999.

    Article  Google Scholar 

  66. Sampath, U. G., Ching, Y. C., Chuah, C. H., Sabariah, J. J., & Lin, P.-C. (2016). Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials, 9(12), 991.

    Article  Google Scholar 

  67. Lee, J. S., Lee, H. K., Kim, J. Y., Hyon, S.-H., & Kim, S. C. (2003). Thermally induced phase separation in poly (lactic acid)/dialkyl phthalate systems. Journal of Applied Polymer Science, 88(9), 2224–2232.

    Article  Google Scholar 

  68. Li, D., Krantz, W. B., Greenberg, A. R., & Sani, R. L. (2006). Membrane formation via thermally induced phase separation (tips): Model development and validation. Journal of Membrane Science, 279(1–2), 50–60.

    Google Scholar 

  69. Yang, H.-C., Wu, Q.-Y., Liang, H.-Q., Wan, L.-S., & Xu, Z.-K. (2013). Thermally induced phase separation of poly (vinylidene fluoride)/diluent systems: Optical microscope and infrared spectroscopy studies. Journal of Polymer Science Part B: Polymer Physics, 51(19), 1438–1447.

    Article  Google Scholar 

  70. Kim, J. F., Kim, J. H., Lee, Y. M., & Drioli, E. (2016). Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE Journal, 62(2), 461–490.

    Article  Google Scholar 

  71. Najjar, R., & Stubenrauch, C. (2009). Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles. Journal of Colloid and Interface Science, 331(1), 214–220.

    Article  Google Scholar 

  72. Whang, K., Thomas, C., Healy, K., & Nuber, G. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36(4), 837–842.

    Article  Google Scholar 

  73. Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 6(3), 1167–1177.

    Article  Google Scholar 

  74. do Vale Morais, A.R., do Nascimento Alencar, É., Júnior, F.H.X., De Oliveira, C.M., Marcelino, H.R., Barratt, G., Fessi, H., Do Egito, E.S.T., & Elaissari, A. (2016). Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics, 503(1–2), 102–114.

  75. Sola, A., Bertacchini, J., D’Avella, D., Anselmi, L., Maraldi, T., Marmiroli, S., & Messori, M. (2019). Development of solvent-casting particulate leaching (scpl) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science and Engineering: C, 96, 153–165.

    Article  Google Scholar 

  76. Chia, O. C., Suhaimin, I. S., Kassim, S. A., Zubir, S. A., & Abdullah, T. K. (2019). Effect of modified solvent casting/particulate leaching (scpl) technique on the properties of bioactive glass reinforced polyurethane scaffold for biomedical applications. Journal of Physical Science, 30, 115–126.

    Article  Google Scholar 

  77. Ghosal, K., Chandra, A., Roy, S., Agatemor, C., Thomas, S., Provaznik, I., et al. (2018). Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Scientific Reports, 8(1), 1–9.

    Article  Google Scholar 

  78. Cooper, A. I. (2000). Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 10(2), 207–234.

    Article  Google Scholar 

  79. Harris, L. D., Kim, B.-S., & Mooney, D. J. (1998). Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 42(3), 396–402.

    Article  Google Scholar 

  80. Jing, X., Mi, H.-Y., & Turng, L.-S. (2017). Comparison between pcl/hydroxyapatite (ha) and pcl/halloysite nanotube (hnt) composite scaffolds prepared by co-extrusion and gas foaming. Materials Science and Engineering: C, 72, 53–61.

    Article  Google Scholar 

  81. Wu, Y. J., Chen, T., Chen, I.-F., Kuo, S. M., & Chuang, C. W. (2018). Developing highly porous collagen scaffolds by using alginate microsphere porogens for stem cell cultures. Materials Letters, 223, 120–123.

    Article  Google Scholar 

  82. Kishan, A. P., & Cosgriff-Hernandez, E. M. (2017). Recent advancements in electrospinning design for tissue engineering applications: A review. Journal of Biomedical Materials Research Part A, 105(10), 2892–2905.

    Article  Google Scholar 

  83. Jun, I., Han, H.-S., Edwards, J. R., & Jeon, H. (2018). Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. International Journal of Molecular Sciences, 19(3), 745.

    Article  Google Scholar 

  84. Denchai, A., Tartarini, D., & Mele, E. (2018). Cellular response to surface morphology: Electrospinning and computational modeling. Frontiers in Bioengineering and Biotechnology, 155, 66.

    Google Scholar 

  85. Zhou, Y., Chyu, J., & Zumwalt, M. (2018). Recent progress of fabrication of cell scaffold by electrospinning technique for articular cartilage tissue engineering. International Journal of Biomaterials, 6, 66.

    Google Scholar 

  86. Soundarya, S. P., Menon, A. H., Chandran, S. V., & Selvamurugan, N. (2018). Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 119, 1228–1239.

    Article  Google Scholar 

  87. Do, A.-V., Khorsand, B., Geary, S. M., & Salem, A. K. (2015). 3d printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials, 4(12), 1742–1762.

    Article  Google Scholar 

  88. Hong, H., Eom, S., Lee, S. J., Youn, J., Kim, D., Chong, H. B., & Kim, D. S. (2022). Multi-scale fabrication techniques of collagen hydrogel for developing physiological 3d in vitro barrier model. International Journal of Precision Engineering and Manufacturing, 66, 1–28.

    Google Scholar 

  89. Yang, S., Leong, K.-F., Du, Z., & Chua, C.-K. (2002). The design of scaffolds for use in tissue engineering. Part ii. Rapid prototyping techniques. Tissue Engineering, 8(1), 1–11.

    Article  Google Scholar 

  90. Jariwala, S. H., Lewis, G. S., Bushman, Z. J., Adair, J. H., & Donahue, H. J. (2015). 3d printing of personalized artificial bone scaffolds. 3D Printing and Additive Manufacturing, 2(2), 56–64.

  91. Ma, P. X., Zhang, R., Xiao, G., & Franceschi, R. (2001). Engineering new bone tissue in vitro on highly porous poly (α-hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 54(2), 284–293.

    Article  Google Scholar 

  92. Nie, L., Chen, D., Suo, J., Zou, P., Feng, S., Yang, Q., Yang, S., & Ye, S. (2012). Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 100, 169–176.

    Article  Google Scholar 

  93. Sola, A., Bertacchini, J., D’Avella, D., Anselmi, L., Maraldi, T., Marmiroli, S., & Messori, M. (2019). Development of solvent-casting particulate leaching (scpl) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science and Engineering: C, 96, 153–165.

    Article  Google Scholar 

  94. Annabi, N., Mithieux, S. M., Weiss, A. S., & Dehghani, F. (2009). The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials, 30(1), 1–7.

    Article  Google Scholar 

  95. Kim, S.-S., Park, M. S., Jeon, O., Choi, C. Y., & Kim, B.-S. (2006). Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 27(8), 1399–1409.

    Article  Google Scholar 

  96. Mikos, A. G., Bao, Y., Cima, L. G., Ingber, D. E., Vacanti, J. P., & Langer, R. (1993). Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 27(2), 183–189.

    Article  Google Scholar 

  97. Rahmati, M., Mills, D. K., Urbanska, A. M., Saeb, M. R., Venugopal, J. R., Ramakrishna, S., & Mozafari, M. (2021). Electrospinning for tissue engineering applications. Progress in Materials Science, 117, 100721.

    Article  Google Scholar 

  98. Yoshimoto, H., Shin, Y., Terai, H., & Vacanti, J. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24(12), 2077–2082.

    Article  Google Scholar 

  99. Ma, J. (2020). Environmentally sustainable management of 3d printing network: Decision support for 3d printing work allocation. International Journal of Precision Engineering and Manufacturing, 21(3), 537–544.

    Article  MathSciNet  Google Scholar 

  100. Guner, A., Bidare, P., Jiménez, A., Dimov, S., & Essa, K. (2022). Nozzle designs in powder-based direct laser deposition: A review. International Journal of Precision Engineering and Manufacturing, 66, 1–18.

    Google Scholar 

  101. Yao, G., Liu, P., Lu, S., & Yan, P. (2022). Design and analysis of additive manufactured flexure hinge with large stroke and high accuracy. International Journal of Precision Engineering and Manufacturing, 23(7), 753–761.

    Article  Google Scholar 

  102. ISO/ASTM 52900. (2015). Additive manufacturing—general principles—terminology.

  103. Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International Scholarly Research Notices, 6, 66.

    Google Scholar 

  104. Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone tissue engineering using 3d printing. Materials Today, 16(12), 496–504.

    Article  Google Scholar 

  105. Szymczyk-Ziółkowska, P., Łabowska, M. B., Detyna, J., Michalak, I., & Gruber, P. (2020). A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering, 40(2), 624–638.

    Article  Google Scholar 

  106. Zhang, H., Moon, S. K., Ngo, T. H., Tou, J., Yusoff, Bin Mohamed, & M. A. (2020). Rapid process modeling of the aerosol jet printing based on gaussian process regression with latin hypercube sampling. International Journal of Precision Engineering and Manufacturing, 21(1), 127–136.

  107. Zhang, L., Yang, G., Johnson, B. N., & Jia, X. (2019). Three-dimensional (3d) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84, 16–33.

    Article  Google Scholar 

  108. Cutolo, A., Neirinck, B., Lietaert, K., de Formanoir, C., & Van Hooreweder, B. (2018). Influence of layer thickness and post-process treatments on the fatigue properties of cocr scaffolds produced by laser powder bed fusion. Additive Manufacturing, 23, 498–504.

    Article  Google Scholar 

  109. Luo, Y., Wu, C., Lode, A., & Gelinsky, M. (2012). Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication, 5(1), 015005.

    Article  Google Scholar 

  110. Shao, H., Ke, X., Liu, A., Sun, M., He, Y., Yang, X., Fu, J., Liu, Y., Zhang, L., Yang, G., et al. (2017). Bone regeneration in 3d printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 9(2), 025003.

    Article  Google Scholar 

  111. Farkas, B., Dante, S., & Brandi, F. (2016). Photoinitiator-free 3d scaffolds fabricated by excimer laser photocuring. Nanotechnology, 28(3), 034001.

    Article  Google Scholar 

  112. Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer thickness and raster angle on the mechanical properties of 3d-printed peek and a comparative mechanical study between peek and abs. Materials, 8(9), 5834–5846.

    Article  Google Scholar 

  113. Yin, J., Yan, M., Wang, Y., Fu, J., & Suo, H. (2018). 3d bioprinting of low-concentration cell-laden gelatin methacrylate (gelma) bioinks with a two-step cross-linking strategy. ACS Applied Materials & Interfaces, 10(8), 6849–6857.

    Article  Google Scholar 

  114. Ho, C. M. B., Mishra, A., Lin, P. T. P., Ng, S. H., Yeong, W. Y., Kim, Y.-J., & Yoon, Y.-J. (2017). 3d printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromolecular Bioscience, 17(4), 1600250.

    Article  Google Scholar 

  115. Darsell, J., Bose, S., Hosick, H. L., & Bandyopadhyay, A. (2003). From ct scan to ceramic bone graft. Journal of the American Ceramic Society, 86(7), 1076–1080.

    Article  Google Scholar 

  116. Wang, C., Huang, W., Zhou, Y., He, L., He, Z., Chen, Z., He, X., Tian, S., Liao, J., Lu, B., et al. (2020). 3d printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1), 82–91.

    Article  Google Scholar 

  117. Aisenbrey, E. A., Tomaschke, A., Kleinjan, E., Muralidharan, A., Pascual-Garrido, C., McLeod, R. R., Ferguson, V. L., & Bryant, S. J. (2018). A stereolithography-based 3d printed hybrid scaffold for in situ cartilage defect repair. Macromolecular Bioscience, 18(2), 1700267.

    Article  Google Scholar 

  118. Guillaume, O., Geven, M., Sprecher, C., Stadelmann, V., Grijpma, D., Tang, T., Qin, L., Lai, Y., Alini, M., De Bruijn, J., et al. (2017). Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 54, 386–398.

    Article  Google Scholar 

  119. Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., & Kim, K. (2015). A simple and high-resolution stereolithography-based 3d bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 045009.

    Article  Google Scholar 

  120. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3d printing of biomaterials. Journal of Biological Engineering, 9(1), 1–14.

    Article  Google Scholar 

  121. Elomaa, L., Keshi, E., Sauer, I. M., & Weinhart, M. (2020). Development of gelma/pcl and decm/pcl resins for 3d printing of acellular in vitro tissue scaffolds by stereolithography. Materials Science and Engineering: C, 112, 110958.

    Article  Google Scholar 

  122. Lee, J. W., Ahn, G., Kim, D. S., & Cho, D.-W. (2009). Development of nano-and microscale composite 3d scaffolds using ppf/def-ha and micro-stereolithography. Microelectronic Engineering, 86(4–6), 1465–1467.

    Article  Google Scholar 

  123. Sobral, J. M., Caridade, S. G., Sousa, R. A., Mano, J. F., & Reis, R. L. (2011). Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomaterialia, 7(3), 1009–1018.

    Article  Google Scholar 

  124. Catros, S., Fricain, J.-C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amédée, J., & Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3(2), 025001.

    Article  Google Scholar 

  125. Doraiswamy, A., Narayan, R., Harris, M., Qadri, S., Modi, R., & Chrisey, D. (2007). Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. Journal of Biomedical Materials Research Part A, 80(3), 635–643.

    Article  Google Scholar 

  126. Shahzad, K., Deckers, J., Zhang, Z., Kruth, J.-P., & Vleugels, J. (2014). Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 34(1), 81–89.

    Article  Google Scholar 

  127. Mazzoli, A. (2013). Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing, 51(3), 245–256.

    Article  Google Scholar 

  128. Bhatt, P. M., Kabir, A. M., Peralta, M., Bruck, H. A., & Gupta, S. K. (2019). A robotic cell for performing sheet lamination-based additive manufacturing. Additive Manufacturing, 27, 278–289.

    Article  Google Scholar 

  129. Bae, E.-J., Kim, J.-H., Kim, W.-C., & Kim, H.-Y. (2014). Bond and fracture strength of metal–ceramic restorations formed by selective laser sintering. The Journal of Advanced Prosthodontics, 6(4), 266–271.

    Article  Google Scholar 

  130. Liao, H.-T., Lee, M.-Y., Tsai, W.-W., Wang, H.-C., & Lu, W.-C. (2016). Osteogenesis of adipose-derived stem cells on polycaprolactone-\(\beta\)-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type i. Journal of Tissue Engineering and Regenerative Medicine, 10(10), 337–353.

    Article  Google Scholar 

  131. Sun, H., He, S., Wu, P., Gao, C., Feng, P., Xiao, T., Deng, Y., & Shuai, C. (2016). A novel MgO–CaO–SiO\(_2\) system for fabricating bone scaffolds with improved overall performance. Materials, 9(4), 287.

    Article  Google Scholar 

  132. Gu, B. K., Choi, D. J., Park, S. J., Kim, M. S., Kang, C. M., & Kim, C.-H. (2016). 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 20(1), 1–8.

    Article  Google Scholar 

  133. Bracaglia, L. G., Smith, B. T., Watson, E., Arumugasaamy, N., Mikos, A. G., & Fisher, J. P. (2017). 3d printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomaterialia, 56, 3–13.

    Article  Google Scholar 

  134. Zhou, Z., Lennon, A., Buchanan, F., McCarthy, H. O., & Dunne, N. (2020). Binder jetting additive manufacturing of hydroxyapatite powders: Effects of adhesives on geometrical accuracy and green compressive strength. Additive Manufacturing, 36, 101645.

    Article  Google Scholar 

  135. Yuan, L., Ding, S., & Wen, C. (2019). Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 4, 56–70.

    Article  Google Scholar 

  136. Sarvari, R., Keyhanvar, P., Agbolaghi, S., Roshangar, L., Bahremani, E., Keyhanvar, N., Haghdoost, M., Keshel, S. H., Taghikhani, A., Firouzi, N., et al. (2022). A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. Journal of Materials Science: Materials in Medicine, 33(3), 1–26.

    Google Scholar 

  137. Chong, W., Kim, S., Yu, C., Woo, S., & Kim, K. (2021). Analysis of health management using physiological data based on continuous exercise. International Journal of Precision Engineering and Manufacturing, 22(5), 899–907.

    Article  Google Scholar 

  138. Wang, Q.-D., & Guo, L.-X. (2021). Biomechanical role of nucleotomy in vibration characteristics of human spine. International Journal of Precision Engineering and Manufacturing, 22(7), 1323–1334.

    Article  Google Scholar 

  139. Balagangadharan, K., Dhivya, S., & Selvamurugan, N. (2017). Chitosan based nanofibers in bone tissue engineering. International Journal of Biological Macromolecules, 104, 1372–1382.

    Article  Google Scholar 

  140. LogithKumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., & Selvamurugan, N. (2016). A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 151, 172–188.

    Article  Google Scholar 

  141. Chen, L., Liu, J., Guan, M., Zhou, T., Duan, X., & Xiang, Z. (2020). Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. International Journal of Nanomedicine, 15, 66. https://doi.org/10.2147/IJN.S249829

    Article  Google Scholar 

  142. Subuki, I., Adnan, N., & Sharudin, R.W. (2018). Biodegradable scaffold of natural polymer and hydroxyapatite for bone tissue engineering: A short review. In AIP conference proceedings (vol. 2031, p. 020019). AIP Publishing LLC.

  143. Dong, C., & Lv, Y. (2016). Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers, 8(2), 42.

    Article  Google Scholar 

  144. Elango, J., Zhang, J., Bao, B., Palaniyandi, K., Wang, S., Wenhui, W., & Robinson, J. S. (2016). Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 91, 51–59.

    Article  Google Scholar 

  145. Yang, B., Li, X., Shi, S., Kong, X., Guo, G., Huang, M., Luo, F., Wei, Y., Zhao, X., & Qian, Z. (2010). Preparation and characterization of a novel chitosan scaffold. Carbohydrate Polymers, 80(3), 860–865.

    Article  Google Scholar 

  146. Xu, Y., Xia, D., Han, J., Yuan, S., Lin, H., & Zhao, C. (2017). Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydrate Polymers, 177, 210–216.

    Article  Google Scholar 

  147. Sheikh, F. A., Ju, H. W., Moon, B. M., Lee, O. J., Kim, J. H., Park, H. J., Kim, D. W., Kim, D. K., Jang, J. E., Khang, G., & Park, C. H. (2016). Hybrid scaffolds based on plga and silk for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. https://doi.org/10.1002/term.1989

    Article  Google Scholar 

  148. Choi, H. J., Zhu, M., Kim, D., Choi, J. H., Kim, C. M., Jeong, Y. H., & Kim, G. M. (2021). Sustained drug release from a microcontainer fabricated using a polydimethylsiloxane stencil. International Journal of Precision Engineering and Manufacturing, 22(11), 1873–1881.

    Article  Google Scholar 

  149. Temple, J. P., Hutton, D. L., Hung, B. P., Huri, P. Y., Cook, C. A., Kondragunta, R., Jia, X., & Grayson, W. L. (2014). Engineering anatomically shaped vascularized bone grafts with hascs and 3d-printed pcl scaffolds. Journal of Biomedical Materials Research - Part A. https://doi.org/10.1002/jbm.a.35107

    Article  Google Scholar 

  150. Singh, D., Babbar, A., Jain, V., Gupta, D., Saxena, S., & Dwibedi, V. (2019). Synthesis, characterization, and bioactivity investigation of biomimetic biodegradable pla scaffold fabricated by fused filament fabrication process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3), 1–13.

    Article  Google Scholar 

  151. Feng, P., Guo, X., Gao, C., Gao, D., Xiao, T., Shuai, X., Shuai, C., & Peng, S. (2015). Diopside modified porous polyglycolide scaffolds with improved properties. RSC Advances, 5(68), 54822–54829.

    Article  Google Scholar 

  152. Backes, E. H., Harb, S. V., Beatrice, C. A. G., Shimomura, K. M. B., Passador, F. R., Costa, L. C., & Pessan, L. A. (2021). Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 6, 66.

    Google Scholar 

  153. Santis, R. D., Russo, A., Gloria, A., D’Amora, U., Russo, T., Panseri, S., Sandri, M., Tampieri, A., Marcacci, M., Dediu, V. A., Wilde, C. J., & Ambrosio, L. (2015). Towards the design of 3d fiber-deposited poly(-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. Journal of Biomedical Nanotechnology, 11, 1236–1246. https://doi.org/10.1166/jbn.2015.2065

    Article  Google Scholar 

  154. Ma, H., Feng, C., Chang, J., & Wu, C. (2018). 3d-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomaterialia, 79, 37–59. https://doi.org/10.1016/j.actbio.2018.08.026

    Article  Google Scholar 

  155. Cox, S. C., Thornby, J. A., Gibbons, G. J., Williams, M. A., & Mallick, K. K. (2015). 3d printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2014.11.024

    Article  Google Scholar 

  156. Mondal, S., Pal, U., & Dey, A. (2016). Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceramics International, 42(16), 18338–18346.

    Article  Google Scholar 

  157. Canillas, M., Pena, P., Aza, A. H. D., & Rodríguez, M. A. (2017). Calcium phosphates for biomedical applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio. https://doi.org/10.1016/j.bsecv.2017.05.001

    Article  Google Scholar 

  158. Miranda, P., Pajares, A., Saiz, E., Tomsia, A. P., & Guiberteau, F. (2008). Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 85(1), 218–227.

    Article  Google Scholar 

  159. Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., & Liu, S. (2019). 3d gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.09.300

    Article  Google Scholar 

  160. Rahmanian, M., Seyfoori, A., Dehghan, M. M., Eini, L., Naghib, S. M., Gholami, H., et al. (2019). Multifunctional gelatin-tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2019.04.028.

    Article  Google Scholar 

  161. Kim, B., Ventura, R., & Lee, B. T. (2018). Functionalization of porous bcp scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. https://doi.org/10.1002/term.2529

    Article  Google Scholar 

  162. Khodaei, M., Valanezhad, A., Watanabe, I., & Yousefi, R. (2017). Surface and mechanical properties of modified porous titanium scaffold. Surface and Coatings Technology, 315, 61–66.

    Article  Google Scholar 

  163. Zhang, X., Li, X.-W., Li, J.-G., & Sun, X.-D. (2014). Preparation and mechanical property of a novel 3d porous magnesium scaffold for bone tissue engineering. Materials Science and Engineering: C, 42, 362–367. https://doi.org/10.1016/j.msec.2014.05.044

    Article  Google Scholar 

  164. Cheng, M.-Q., Wahafu, T., Jiang, G.-F., Liu, W., Qiao, Y.-Q., Peng, X.-C., Cheng, T., Zhang, X.-L., He, G., & Liu, X.-Y. (2016). A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Scientific Reports, 6(1), 1–14.

    Google Scholar 

  165. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72.

    Article  Google Scholar 

  166. Witte, F., Fischer, J., Nellesen, J., & Beckmann, F. (2006). Microtomography of magnesium implants in bone and their degradation. In Developments in X-ray Tomography V (vol. 6318, p. 631806). International Society for Optics and Photonics.

  167. Wenger, M. P., Bozec, L., Horton, M. A., & Mesquida, P. (2007). Mechanical properties of collagen fibrils. Biophysical Journal, 93(4), 1255–1263.

    Article  Google Scholar 

  168. Roeder, B. A., Kokini, K., Sturgis, J. E., Robinson, J. P., & Voytik-Harbin, S. L. (2002). Tensile mechanical properties of three-dimensional type i collagen extracellular matrices with varied microstructure. Journal of Biomechanical Engineering, 124(2), 214–222.

    Article  Google Scholar 

  169. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., & Jin, Z. (2010). Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 11(9), 2345–2351.

    Article  Google Scholar 

  170. Schuster, M., Turecek, C., Kaiser, B., Stampfl, J., Liska, R., & Varga, F. (2007). Evaluation of biocompatible photopolymers i: Photoreactivity and mechanical properties of reactive diluents. Journal of Macromolecular Science, Part A, 44(5), 547–557.

    Article  Google Scholar 

  171. Cifuentes, S. C., Frutos, E., González-Carrasco, J. L., Muñoz, M., Multigner, M., Chao, J., Benavente, R., & Lieblich, M. (2012). Novel plla/magnesium composite for orthopedic applications: A proof of concept. Materials Letters, 74, 239–242.

    Article  Google Scholar 

  172. Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734.

    Article  Google Scholar 

  173. Sankaranarayanan, S., Jayalakshmi, S., & Gupta, M. (2012). Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure mg. Materials & Design, 37, 274–284.

    Article  Google Scholar 

  174. Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Engineering. https://doi.org/10.1089/107632704322791673

    Article  Google Scholar 

  175. Kong, J., Wei, B., Groth, T., Chen, Z., Li, L., He, D., Huang, R., Chu, J., & Zhao, M. (2018). Biomineralization improves mechanical and osteogenic properties of multilayer-modified plga porous scaffolds. Journal of Biomedical Materials Research - Part A. https://doi.org/10.1002/jbm.a.36487

    Article  Google Scholar 

  176. Doyle, S. E., Henry, L., McGennisken, E., Onofrillo, C., Bella, C. D., Duchi, S., O’Connell, C. D., & Pirogova, E. (2021). Characterization of polycaprolactone nanohydroxyapatite composites with tunable degradability suitable for indirect printing. Polymers, 13(2), 295.

    Article  Google Scholar 

  177. Germiniani, L. G., da Silva, L. C., Plivelic, T. S., & Gonçalves, M. C. (2019). Poly (\(\varepsilon\)-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion. Journal of Materials Science, 54(1), 414–426.

    Article  Google Scholar 

  178. Li, Y., Ceylan, M., Shrestha, B., Wang, H., Lu, Q. R., Asmatulu, R., & Yao, L. (2014). Nanofibers support oligodendrocyte precursor cell growth and function as a neuron-free model for myelination study. Biomacromolecules, 15(1), 319–326.

    Article  Google Scholar 

  179. Aghdam, R. M., Najarian, S., Shakhesi, S., Khanlari, S., Shaabani, K., & Sharifi, S. (2012). Investigating the effect of pga on physical and mechanical properties of electrospun pcl/pga blend nanofibers. Journal of Applied Polymer Science, 124(1), 123–131.

    Article  Google Scholar 

  180. Levengood, S. K. L., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2(21), 3161–3184.

    Article  Google Scholar 

  181. Hospodiuk, M., Dey, M., Sosnoski, D., & Ozbolat, I. T. (2017). The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 35(2), 217–239.

    Article  Google Scholar 

  182. Collins, M. N., Ren, G., Young, K., Pina, S., Reis, R. L., & Oliveira, J. M. (2021). Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Advanced Functional Materials, 31(21), 2010609.

    Article  Google Scholar 

  183. Vella, J. B., Trombetta, R. P., Hoffman, M. D., Inzana, J., Awad, H., & Benoit, D. S. W. (2018). Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Journal of Biomedical Materials Research - Part A, 106, 663–672. https://doi.org/10.1002/jbm.a.36270

    Article  Google Scholar 

  184. Kawai, T., Shanjani, Y., Fazeli, S., Behn, A. W., Okuzu, Y., Goodman, S. B., & Yang, Y. P. (2018). Customized, degradable, functionally graded scaffold for potential treatment of early stage osteonecrosis of the femoral head. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.23673

    Article  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of controllable mechanical and biological properties scaffold based on additive manufacturing (KITECH JE-22-0012).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheolhee Kim or Sung Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

The original online version of this article was revised: In this article the authors have been affiliated erroneously.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JW., Min, KE., Kim, C. et al. Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering. Int. J. Precis. Eng. Manuf. 24, 511–529 (2023). https://doi.org/10.1007/s12541-022-00755-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00755-7

Keywords

Navigation