Skip to main content

Advertisement

Log in

Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Recalcitrant xenobiotic compounds are a major source of concern due to their resistance to degradation and persistency in the environment. Xenobiotic compounds pose a serious threat to the environment as they tend to distort the nutrient cycling and affect non-target organisms. These recalcitrant compounds include heavy metals, halocarbons, polychlorinated biphenyls, polycyclic aromatic compounds, synthetic polymers, alkyl benzyl sulphonates, nitroaromatics, dioxins, synthetic dyes, chlorophenols, certain herbicides and pesticides as well as lignins that are ubiquitous in nature. Xenobiotic compounds find their way into the environment either through intentional release as happens with pesticides and herbicides spray or accidentally in the form of oil spills and persist as sediments and complexes, thereby reducing the quality of soil and water bodies and consequently creating the need for removal and/or remediation processes. White rot fungi which degrade the most recalcitrant natural polymer, lignin, have been shown to degrade a wide range of recalcitrant xenobiotic compounds. Recently, the use of co-cultures of white rot has been a subject of research. Owing to the variation in the ligninolytic machinery and rates of degradation, the use of co-cultures is attractive as it offers the advantage of combining the degradative capabilities of different fungi to bring about complete degradation of the parent compounds as well as the metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20(6):545–550

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2008) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Mussarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers Inc, New York, pp 261–284

    Google Scholar 

  • Alam MZ, Razi F, Aziz SA, Molla AH (2003) Optimization of compatible mixed cultures for liquid state bioconversion of municipal wastewater sludge. Water Air Soil Pollut 149:113–126

    Article  CAS  Google Scholar 

  • Albert S, Chauhan D, Pandya B, Padhiar A (2011) Screening of Trichoderma spp. as potential fungal partner in co-culturing with white rot fungi for efficient bio-pulping. Glob J Biotechnol Biochem 6(3):95–101

    CAS  Google Scholar 

  • Alexander RR, Alexander M (2000) Bioavailability of genotoxic compounds in soils. Environ Sci Technol 34:1589–1593

    Article  CAS  Google Scholar 

  • Ali NF, El-Mohamedy RSR (2012) Microbial decolourization of textile waste water. J Saudi Chem Soc 16(2):117–123

    Article  CAS  Google Scholar 

  • Andersson BE, Welinder L, Olsson PA, Olsson S, Henrysson T (2000) Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresour Technol 73:29–36

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2006) Investigation of organic matter dynamics during in-vessel composting of aged coal tar contaminated soil by fluorescence excitation–emission spectroscopy. Chemosphere 64:839–847

    Article  CAS  Google Scholar 

  • Arani LG, Gunale V (2010) Soil petroleum hydrocarbon bioremediation by a fungi consortium. Environ Sci 7(3):23–36

    Google Scholar 

  • Archibald F, Bourbonnais R, Jurasek L, Paice M, Reid I (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–236

    Article  CAS  Google Scholar 

  • Arisoy M (1998) Biodegradation of chlorinated organic compounds by white-rot fungi. Bull Environ Contam Toxicol 60:872–876

    Article  CAS  Google Scholar 

  • Armstrong DE, Chesters G, Harris RF (1967) Atrazine hydrolysis in soil. Soil Sci Am J 31:61–66

    Article  CAS  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731

    Article  CAS  Google Scholar 

  • Asgher M, Iqbal HMN (2013) Enhanced catalytic features of sol–gel immobilized MnP isolated from solid state culture of Pleurotus ostreatus IBL-02. Chin Chem Lett 24(4):344–346. doi:10.1016/j.cclet.2013.02.01

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Shah SA, Asad MJ, Legge RL (2007) Decolorization potential of mixed microbial consortia for reactive and disperse textile dyestuffs. Biodegradation 18:311–316

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in bio-degradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  Google Scholar 

  • Asgher M, Jamil F, Iqbal HMN (2012a) Bioremediation potential of mixed white rot culture of Pleurotus ostreatus IBL-02 and Coriolus versicolor IBL-04 for textile industry wastewater. J Biorem Biodegrad S1:007. doi:10.4172/2155-6199.S1-007

    Google Scholar 

  • Asgher M, Kamal S, Iqbal HMN (2012b) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic Sol-Gel entrapment. Chem Cent J 6(1):110. doi:10.1186/1752-153X-6-110

    Article  CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20:347–352

    Article  CAS  Google Scholar 

  • Asiegbu FO, Paterson A, Smith JE (1996) The effects of co-fungal cultures and supplementation with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World J Microbiol Biotechnol 12:273–279

    Article  CAS  Google Scholar 

  • Attéké C, Mounguengui S, Saha Tchinda J-B, Ndikontar MK, Ibrahim B, Gelhaye E, Gerardin P (2013) Biodegradation of reactive blue 4 and orange G by Pycnoporus sanguineus strain isolated in Gabon. J Bioremediat Biodegrad 4(7):206. doi:10.4172/2155-6199.1000206

    Google Scholar 

  • Bader J, Mast-Gerlach E, Popovic MK, Bajpai R, Stahl U (2010) Relevance of microbial co-culture fermentations in biotechnology. J Appl Microbiol 109:371–387

    Article  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Baldrian P (2004) Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 50:245–253

    Article  CAS  Google Scholar 

  • Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66(6):2471–2478

    Article  CAS  Google Scholar 

  • Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. APS Press, St. Paul

    Google Scholar 

  • Barr BP, Aust D (1994) Mechanisms of white-rot fungi use to degrade pollutant. Environ Sci Technol 28:78–87

    Article  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  CAS  Google Scholar 

  • Beltran-Garcia MJ, Estarron-Espinosa M, Ogura T (1997) Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J Agric Food Chem 45:4049–4052

    Article  CAS  Google Scholar 

  • Bennett JW, Connick WJ, Daigle D, Wunch K (2007) Formulation of fungi for in situ bioremediation. In: Gadd GM, Watkinson SC, Dyer PS (eds) Fungi in the Environment. Cambridge University Press, Cambridge, pp 97–112

    Google Scholar 

  • Biancotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:121–131

    Google Scholar 

  • Boersma FGH, Otten R, Warmink JA, Nazir R, van Elsas JD (2010) Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds. Soil Biol Biochem 42:2137–2145

    Article  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    CAS  Google Scholar 

  • Bolobova AV, Askadskii AA, Kondrashchenko VI, Rabinovich ML (2002) Teoreticheskie osnovy biotekhnologiidrevesnykh kompozitov. Kn.II. Fermenty, modeli, protsessy (Theoretical Basis of the Biotechnology of Wood Composites: II. Enzymes, Models, and Processes), vol 2. Nauka, Moscow

    Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial co-cultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1996) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  Google Scholar 

  • Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58:3217–3224

    CAS  Google Scholar 

  • Breitenbach M, Weber M, Rinnerthaler M, Karl T, Breitenbach-Koller L (2015) Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules 5(2):318–342

    Article  CAS  Google Scholar 

  • Buswell JA, Cai Y, Chang S (1995) Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol Lett 128:81–88

    Article  CAS  Google Scholar 

  • Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53(2–3):163–202

    Article  CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54(6):751–758

    Article  CAS  Google Scholar 

  • Castillo MDP, Ander P, Stenstrom J, Torstensson L (2000) Degradation of the herbicide bentazon as related to enzyme production by Phanerochaete chrysosporium in two solid substrate fermentation systems. World J Microb Biotechnol 16:289–295

    Article  Google Scholar 

  • Castillo MDP, Ander P, Stenstrom J, Torstensson L (2001) Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation systems intended for degradation of pesticides. World J Microb Biotechnol 17:627–633

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  Google Scholar 

  • Chavez-Gomez B, Quitero R, Garcia Esparza-, Mesta-Howard AM, Diaz Zavala, de la Serna FJ, Hernandez-Rodriguez CH, Gillen T, Poggi-Varaldo HM, Barrera-Cortes J, Rodriguez-Vazquez R (2003) Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour Technol 89(2):177–183

    Article  CAS  Google Scholar 

  • Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int Biodeterior Biodegrad 59:32–39

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo-dye oxidation by laccase from Pycularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  • Christian VV, Shrivasava R, Novotný C, Vyas BRM (2003) Decolorization of sulfonphthalein by managanese peroxidase activity of Phanerochaete chrysosporium. Folia Microbiol 48:771–774

    Article  CAS  Google Scholar 

  • Claus H, Faber G, Konig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59(6):672–678

    Article  CAS  Google Scholar 

  • Coelho-Moreira JS, Maciel GM, Castoldi R, Mariano SS, Inácio FD, Bracht A, Realta RM (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Price AJ, Kelton JA (eds) Herbicides—advances in research. Croatia, InTech, pp 165–187. doi:10.5772/51496

    Google Scholar 

  • Covino S (2010) In vivo and in vitro degradation of aromatic contaminants by white rot fungi. A case study: Panus tigrinus CBS 577.79. PhD thesis, Tuscia University–Viterbo-Italy, Department of Agrobiology and Agrochemistry

  • Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microbiol 67(5):2088–2094

    Article  CAS  Google Scholar 

  • Cupul WC, Abarca GH, Carrera DM, Vázquez RR (2014) Enhancement of ligninolytic enzyme activities in a Trametes maximaPaecilomyces carneus co-culture: key factors revealed after screening using Plackett-Burman experimental design. Electronic J Biotechnol 17:114–121

    Article  CAS  Google Scholar 

  • Cupul WC, Heredia-Abarca G, Rodríguez-Vázquez R (2016) Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health Part B 51(5):298–308

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthesis dyes. Enzyme Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • Davila-Vázquez G, Tinoco R, Pickard MA, Vázquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme Microb Technol 36:223–231

    Article  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  Google Scholar 

  • Demir G (2004) Degradation of toluene and benzene by Trametes versicolor. J Environ Biol 25:19–25

    CAS  Google Scholar 

  • Dodson PJ, Evans CS, Harvey PJ, Palmer JM (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyzes cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22

    CAS  Google Scholar 

  • Doong R, Lei W (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater B96:15–27

    Article  Google Scholar 

  • Dosoretz CG, Šašek V (2000) Screening of white rot fungi for bioremediation of contaminated soil. Office of the Science Advisor U.S. Agency of International Development

  • Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2011) Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnol 28:616–626

    Article  CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production—Pleuorotus ostreatus for bioremediation of creosote contaminated soil. Int Biodeterior Biodegrad 44:117–126

    Article  CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol 144:37–42

    Article  CAS  Google Scholar 

  • Ellegaard-Jensen L (2012) Fungal degradation of pesticides—construction of microbial consortia for bioremediation. PhD thesis, The PhD School of Science, Faculty of Science, University of Melbourne

  • Erikson K-E, Blanchette L, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New York

    Book  Google Scholar 

  • Eriksson K-E (1981) Fungal degradation of wood components. Pure Appl Chem 53:33–43

    Article  CAS  Google Scholar 

  • Evan CS, Hedger JN (2001) Degradation of plant cell wall polymers. In: Gadd GM (ed) Fungi in bioremediation, vol 23. Cambridge Univ. Press, Cambridge, pp 1–26

    Google Scholar 

  • Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 49:299–304

    CAS  Google Scholar 

  • Fernández-Sánchez JM, Rodriguez-Vazquez R, Ruiz-Aguilar G, Alvarez PJJ (2001) PCB biodegradation in aged contaminated soil: interactions between exogenous Phanerochaetechrysosporiumand indigenous microorganisms. J Environ Sci Health Part A 36:1145–1162

    Article  Google Scholar 

  • Fernando T, Aust SD (1994) Biodegradation of toxic chemicals by white rot fungi. In: Chaudhry GR (ed) Biological decomposition and bioremediation of toxic chemicals. Chapman and Hall, London, p 386

    Google Scholar 

  • Ferreira GAP, Da Silva IR, Sedarati MR, Hedger JN (2006) Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens. Mycol Res 110:161–168

    Article  CAS  Google Scholar 

  • Flores C, Vidal C, Trejo HMR, Galindo E, Serrano CL (2009) Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. J Appl Microbiol 106:249–257

    Article  CAS  Google Scholar 

  • Flores C, Casasanero R, Trejo-Hernández MR, Galindo E, Serrano CL (2010) Production of laccase by Pleurotus ostreatus in submerged fermentation in co-culture with Trichoderma viride. J Appl Microbiol 108:810–817

    Article  CAS  Google Scholar 

  • Ford CI, Walter M, Northcott GL (2007) Fungal inoculum properties: extracellular expression and Pentachlorophenol removal by New Zealand Trametes species in contaminated field soils. J Environ Qual 36:1749–1759

    Article  CAS  Google Scholar 

  • Freitag CM, Morrell JJ (1992) Changes in selected enzyme activities during growth of pure and mixed cultures of the white-rot fungus Trametes versicolor and the potential biocontrol fungus Trichoderma harzianum. Can J Microbiol 38:317–323

    Article  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interaction: hyphens between agricultural, clinical, environmental and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Removal of congo red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7(1):239–247

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Preface. In: Gadd GM (ed) Fungi in bioremedation. Cambridge University Press, England, pp xi–xiii

    Chapter  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Gao D, Du L, Yang J, Wu WM, Liang H (2010) A critical review of the application of white rot fungus to environmental pollution control. CRC Crit Rev Biotechnol 30:70–77

    Article  CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(4):497–526

    Article  CAS  Google Scholar 

  • Ghani A, Wardle DA, Rahman A, Lauren DR (1996) Interactions between 14C-labelled atrazine and the soil microbial biomass in relation to herbicide degradation. Biol Fertil Soils 21:17–22

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176(5):1339–1347

    Article  CAS  Google Scholar 

  • Gramss G (1979) Role of soil mycelium in nutrition of wood-destroying basidiomycetous fungi on inoculated wood blocks in soil. Z Allg Mikrobiol 19:143–145

    Article  CAS  Google Scholar 

  • Guillén F, Martinez AT, Martinez MJ, Evans CS (1994) Hydrogen peroxide-producing system of Pleurotus eryngii involving extracellular enzyme aryl-alcohol oxidase. Appl Microbiol Biotechnol 41:465–470

    Google Scholar 

  • Guillén F, Gomez-Toribio V, Martinez MJ, Martinez AT (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl-alcohol oxidase. Arch Biochem Biophys 382:142–147

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour Technol 68:173–178

    Article  CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9:29–71

    Article  Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajiam F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem E 43(3):459–462

    Article  CAS  Google Scholar 

  • Hammel KE (1995) Mechanism for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(5):41–43

    Article  CAS  Google Scholar 

  • Hammel KE, Jensen KA, Mozuch MD, Lamducci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281

    CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay in fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  • Han MJ, Choi HT, Song HG (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A, Uusi-Rauva A (1983) Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Euro J Appl Microbiol Biotechnol 17:235–242

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  CAS  Google Scholar 

  • Hechmi N, Bosso L, El-Bassi L, Scelza R, Testa A, Jedidi N, Rao MA (2016) Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents. Chemosphere 165:547–554

    Article  CAS  Google Scholar 

  • Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from woodrotting fungi (family Coprinaceae). Appl Environ Microbiol 64(5):1601–1606

    CAS  Google Scholar 

  • Hestbjerg H, Willumsen P, Christensen M, Andersen O, Jacobsen C (2003) Bioaugmentation of tar-contaminated soil under field condition using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698

    Article  CAS  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  • Ho Y, Jackson M, Yang Y, Mueller JG, Pritchard PH (2000) Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments and comparison of several Sphingomonas sp. J Ind Microbiol 2:100–112

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Homolka L, Voláková I, Nerud F (1995) Variability of enzymatic activities in ligninolytic fungi Pleurotus ostreatus and Lentinus tigrinus after protoplasting and UV-mutagenization. Biotechnol Tech 9(3):157–162

    Article  CAS  Google Scholar 

  • Houot S, Barriuso E, Bergheaud V (1998) Modifications to atrazine degradation pathways in a loamy soil after addition of organic amendments. Soil Biol Biochem 30:2147–2157

    Article  CAS  Google Scholar 

  • Iakovlev A, Olson Ǻ, Elfstrand M, Stenlid J (2004) Differential gene expression during interaction between Heterobasidion annosum and Physisporinus sanguinolentus. FEMS Microbiol Lett 241:79–85

    Article  CAS  Google Scholar 

  • in der Wiesche C, Martens R, Zadrazil F (1996) Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46:653–659

    Article  Google Scholar 

  • Iqbal HMN, Asgher M (2013a) Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04. Protein Pept Lett 20(5):591–600

    Article  CAS  Google Scholar 

  • Iqbal HMN, Asgher M (2013b) Decolorization applicability of sol–gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganodermalucidum. BMC Biotechnol 13:56–62

    Article  CAS  Google Scholar 

  • Jackson MM, Hou L-H, Banerjee HN, Sridhar R, Dutta SK (1999) Disappearance of 2,4-dinitrotoluene and 2-amino,4,6-dinitrotoluene by Phanerochaete chrysosporium under non-lignonolytic conditions. Bull Environ Contam Toxicol 62:390–396

    Article  CAS  Google Scholar 

  • Jang MY, Ryu WY, Cho MH (2006) Enhanced production of laccase from Trametes sp. by combination of various inducers. Biotechnol Bioprocess Eng 11:96–99

    Article  CAS  Google Scholar 

  • Jarosz-Wilolazka A, Kochmanska-Rdest J, Malarczyk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolorize azo and anthraquinone dyes. Enzyme Microb Technol 30(40):566–572

    Article  Google Scholar 

  • Järvinen J, Taskila S, Isomäki R, Ojamo H (2002) Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2:62–71

    Article  CAS  Google Scholar 

  • Jiang F, Kongsaeree P, Schilke K, Lajoie C, Kelly C (2008) Effects of pH and temperature on recombinant manganese peroxidase production and stability. Appl Biochem Biotechnol 146(1–3):15–27

    Article  CAS  Google Scholar 

  • Johansson T, Nyman PO (1993) Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. Arch Biochem Biophys 300(1):49–56

    Article  CAS  Google Scholar 

  • Jolivalt C, Neuville L, Boyer FD, Kerhoas L, Mougin C (2006) Identification and formationpathway of laccase-mediated oxidation products formed from hydroxyphenylureas. J Agric Food Chem 54:5046–5054

    Article  CAS  Google Scholar 

  • Kapich AN, Shishkina LN (1992) Antioxidant properties of wood-decaying Basidiomycetes. Mikologiya i fitopatologiya 26(6):486–492 (In Russian)

    Google Scholar 

  • Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119

    Article  CAS  Google Scholar 

  • Karigar CS, Rao S (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. doi:10.4061/2011/805187

    Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  CAS  Google Scholar 

  • Khadrani A, Siegle-Murandi F, Steinman R, Vrousami T (1999) Degradation of three phenylurea herbicides (chlortorulon, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38:3041–3050

    Article  CAS  Google Scholar 

  • Khindaria A, Grover TA, Aust SD (1994) Oxalate-dependent reductive activity of manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 314(2):301–306

    Article  CAS  Google Scholar 

  • Kim J-D, Lee C-G (2007) Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol Bioprocess Eng 12(4):410–416

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Physiol 41:465–505

    CAS  Google Scholar 

  • Kjøller AH, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 267–284

    Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Hauke H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    Article  CAS  Google Scholar 

  • Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IM, Yaropolov A (2002) Production of lignin modifying enzymes by co-cultivated white rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580

    Article  CAS  Google Scholar 

  • Kowalski H (2002) U.S.—German research consortium sequences genome of versatile soil microbe. J Craig Venter Archive. http://www.tigr.org/news/pr_12_02_02.shtml

  • Kuhar F, Castiglia V, Levin L (2015) Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int Biodeterior Biodegrad 104:238–243

    Article  CAS  Google Scholar 

  • Kumari S, Naraian R (2016) Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology. J Environ Manag 180:172–179

    Article  CAS  Google Scholar 

  • Lang E, Eller G, Zadrazil F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10

    Article  CAS  Google Scholar 

  • Lang E, Kleeberg I, Zadrazil F (2000) Extractable organic carbon and counts of bacteria near the lignocellulose–soil interface during the interaction of soil microbiota and white rot fungi. Bioresour Technol 75:57–65

    Article  CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Zigenhagen D, Wojtas-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  Google Scholar 

  • Leontievsky AA (2002) Ligninases of Basidiomycetes. Doctoral (Biol.) Dissertation, Institut mikrobiologiii fiziologii mikroorganizmov RAN, Pushchino

  • Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) ‘Yellow’ laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413(3):446–448

    Article  CAS  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26. doi:10.1016/j.jhazmat.2007.04.040

    Article  CAS  Google Scholar 

  • Liebich J, Burauel P, Führ F (1999) Microbial release and degradation of non-extractable anilazine residues. J Agric Food Chem 47:3905–3910

    Article  CAS  Google Scholar 

  • Lopez C, Mielgo I, Moreira MT, Feijoo G, Lema JM (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds. J Biotechnol 99:249–257

    Article  CAS  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  • Lyr H (1958) Die Inuktion der laccase-bildung bei Collybia velutipes Curt. Archiv Für Microbiologie 28:310–324

    Article  CAS  Google Scholar 

  • Lyr H (1963) Enzymatische detoxifikation chlorierter phenok. Phytopathologie Zeitscchrift 38:342–354

    Google Scholar 

  • Maciel MJM, Silva AC, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13(6):14–15

    Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248

    Article  Google Scholar 

  • Maijala P (2005) Co-culturing of white-rot fungi on wood—potential in biopulping? In: Seminar on forest pathology. Finnish Forest Research Institute, Vantaa Research Centre

  • Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto JH, Reponen P, Mäentausta O, Mettala A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzyme Microb Technol 43:169–177

    Article  CAS  Google Scholar 

  • Marcus A (2003) Versatile soil-dwelling microbe is mapped. Genome News Network. http://www.genomenewsnetwork.org/articles/01_03/soil_microbe.shtml

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  CAS  Google Scholar 

  • Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43:97–103

    Article  CAS  Google Scholar 

  • Martínez M, Ruiz Duenas F, Guillen F, Martinez A (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  Google Scholar 

  • Martins MAM, Cardoso MH, Queiroz MJ, Ramalho MT, Oliveira-Campos AM (1998) Biodegradation of azodyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere 38:2455–2460

    Article  Google Scholar 

  • Masaphy S, Henis Y, Levanon D (1996) Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 62(10):3587–3593

    CAS  Google Scholar 

  • Mata G, Murrieta Hernández DM, Iglesias Andreu LG (2005) Changes in lignocellulolytic enzyme activities in six Pleurotus spp. strains cultivated on coffee pulp in confrontation with Trichoderma spp. World J Microbiol Biotechnol 21:143–150

    Article  CAS  Google Scholar 

  • McFarland MJ, Salladay D, Ash D, Baiden E (1996) Composting treatment of alachlor impacted soil amended with the white rot fungus: Phanerochaete chrysosporium. Hazard Waste Mater 13:363–373

    Article  CAS  Google Scholar 

  • Mester T, Jong E, Field JA (1995) Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol 61(5):1881–1887

    CAS  Google Scholar 

  • Mielgo I, Moreira MT, Feijoo G, Lema JM (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res 36(7):1896–1901

    Article  CAS  Google Scholar 

  • Mikamo E, Harada S, Nishikawa J, Nishihara T (2003) Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregame X receptors. Toxicol Appl Pharmacol 193:66–72

    Article  CAS  Google Scholar 

  • Mikesková H, Novotný Č, Svobodová K (2012) Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl Microbiol Biotechnol 95(4):861–870

    Article  CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    CAS  Google Scholar 

  • Mougin C, Boyer F-D, Caminade E, Rama R (2000) Cleavage of the diketonitrile derivative of the herbicide isoxaflutole by extracellular fungal oxidases. J Agric Food Chem 48:4529–4534

    Article  CAS  Google Scholar 

  • Mounguengui S, Attéké C, Saha Tchinda J-B, Ndikontar MK, Dumarçay S, Gerardin P (2014) Discoloration and biodegradation of two dyes by white-rot fungi Perreniporia tephropora MUCL 47500 isolated in Gabon. Int J Curr Microbiol Appl Sci 3(6):731–741

    Google Scholar 

  • Mucha J, Dahm H, Strzelczyk E, Werner A (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Arch Microbiol 185:69–77

    Article  CAS  Google Scholar 

  • Muheim A, Waldner R, Leisola MSA, Fiechter A (1990) An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb Technol 12:204–209

    Article  CAS  Google Scholar 

  • Nachimuthu S, Chinnagounder S (2015) Bioremediation of PAHs the co-culture of white rot fungi and bacteria a FRED in silico emerge. Int J Curr Microbiol App Sci 4(8):358–371

    Google Scholar 

  • Nielsen TH, Thrane C, Cristophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  Google Scholar 

  • Nilsson R (2000) Endocrine modulators in the food chain and environment. Toxicol Pathol 28(3):420–431

    Article  CAS  Google Scholar 

  • Novotný C, Vyas BRM, Erbanová P, Kubátová A, Šašek V (1997) Removal of PCBs by various white-rot fungi in liquid cultures. Folia Microbiol 42(2):136–140

    Article  Google Scholar 

  • Novotný C, Erbanová P, Šašek V, Kubatová A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10:159–168

    Article  Google Scholar 

  • Novotný C, Rawal B, Bhatt M, Patel M, Šašek V, Molitoris HP (2001) Capacity of Irpexlacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J Biotechnol 89(2):113–122

    Article  Google Scholar 

  • Novotný C, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  • Oberbremer A, Mueller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–489

    Article  CAS  Google Scholar 

  • Ohkuma M, Maeda Y, Johjima T, Kudo T (2001) Lignin degradation and roles of white rot fungi: study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. RIKEN Rev 42:39–42

    CAS  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59(12):4017–4023

    CAS  Google Scholar 

  • Otieno W, Jeger M, Termorshuizen A (2003) Effect of infesting soil with Trichoderma harzianum and amendment with coffee pulp on survival of Armillaria. Biol Control 26:293–301

    Article  Google Scholar 

  • Parani K, Eyini M (2010) Effect of co-fungal treatment on biodegradation of coffee pulp waste in solid state fermentation. Asian J Exp Biol Sci 1:352–359

    CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  CAS  Google Scholar 

  • Paszczynski A, Crawford R (2000) Recent advances in the use of fungi in environmental remediation and biotechnology. Soil Biochem 10:379–422

    CAS  Google Scholar 

  • Pazarlioglu NK, Akkaya A, Akdogan HA, Gungor B (2010) Biodegradation of direct blue 15 by free and immobilized Trametes versicolor. Water Environ Res 82:579–585

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58(3):179–196

    Article  CAS  Google Scholar 

  • Perez J, Jeffries TV (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    CAS  Google Scholar 

  • Pérez-Armendáriz B, Martínez-Carrera B, Calixto-Mosqueda M, Alba J, Rodríguez-Vázquez R (2010) Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico. Rev Int Contam Ambient 26(3):193–199

    Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  CAS  Google Scholar 

  • Pickard MA, Vandertol H, Roman R, Vazquez-Duhalt R (1999) High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Can J Microbiol 45:627–631

    Article  CAS  Google Scholar 

  • Pizzul L, Castillo MDP, Stenstrom J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20:751–759

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microb Ecol 51:71–78

    Article  CAS  Google Scholar 

  • Qi-he C, Krügener S, Hirth T, Rupp S, Zibek S (2011) Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl Biochem Biotechnol 165:700–718

    Article  CAS  Google Scholar 

  • Quaratino D, Federici F, Fenice M, D’Annibale A (2006) Mn-peroxidase production by Panus tigrinus CBS 577.79: response surface optimisation and bioreactor comparison. J Chem Technol Biotechnol 81:832–840

    Article  CAS  Google Scholar 

  • Rabinovich ML, Bolobova AV, Vasil’chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 1:1–17

    Article  Google Scholar 

  • Radtke C, Cook WS, Anderson A (1994) Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl Microbiol Biotechnol 41:274–280

    Article  CAS  Google Scholar 

  • Rapp P (2001) Multiphasic kinetics of transformation of 1,2,4-trichlorobenzene at nano- and micromolar concentrations by Burkholderia sp. strain PS14. Appl Environ Microbiol 67(8):3496–3500

    Article  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18

    Article  CAS  Google Scholar 

  • Rayner ADM, Boddy L (1988) Decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Rayner ADM, Griffith GS, Wildman HG (1994) Induction of metabolic and morphogenetic changes during mycelial interactions among species of higher fungi. Biochem Soc Trans 22:389–394

    Article  CAS  Google Scholar 

  • Rayner ADM, Griffith GS, Ainsworth AM (1995) Mycelial interconnectedness. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 20–40

    Google Scholar 

  • Reddy CA (1993) An overview of the recent advances on the physiology and molecular biology of lignin peroxidases of Phanerochaete chrysosporium. J Biotechnol 30:91–107

    Article  CAS  Google Scholar 

  • Reddy CA (1995) The potential for white rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 52–78

    Chapter  Google Scholar 

  • Rehmann K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36:2977–2992

    Article  CAS  Google Scholar 

  • Rodríguez-Vázquez R, Cruz-Cordova T, Fernández-Sánchez JM, Roldán-Carrillo T, Mendoza-Cantú A, Saucedo-Castañeda G, Tomasini-Campocosio A (1999) Use of bagasse pith as solid substrate for P. chrysosporium growth. Folia Microbiol 44(2):213–218

    Article  Google Scholar 

  • Rønhede S, Sørensen SR, Jensen B, Aamand J (2007) Mineralization of hydroxylated isoproturon metabolites produced by fungi. Soil Biol Biochem 39:1751–1758

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  Google Scholar 

  • Rüttimann-Johnson C, Lamar RT (1997) Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi. Soil Biol Biochem 29:1143–1148

    Article  Google Scholar 

  • Ryan T, Bumpus J (1989) Biodegradation of 2,4,5-trichlorophenoxyacteic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 31:302–307

    Article  CAS  Google Scholar 

  • Ryu DDY, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102

    Article  CAS  Google Scholar 

  • Ryu K, Kang JH, Wang L, Lee EK (2008) Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. J Biotechnol 135:241–246

    Article  CAS  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152(2):227–234

    Article  CAS  Google Scholar 

  • Šašek V, Glaser JA, Baveye P (2003) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Savoie JM, Mata G, Billete C (1998) Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl Microbiol Biotechnol 49:589–593

    Article  CAS  Google Scholar 

  • Savoie JM, Mata G, Mamoun M (2001) Variability in brown line formation and extracellular laccase production during interaction between white-rot basidiomycetes and Trichoderma harzianum biotype Th2. Mycologia 93:243–248

    Article  CAS  Google Scholar 

  • Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KS, Ford C, Walter M (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 21:377–385

    Article  CAS  Google Scholar 

  • Selvam K, Swaminathan K, Chae KS (2003) Decolorization of azo dyes and dye industry effluent by white rot fungus Thelephora sp. Bioresour Technol 88(2):115–119

    Article  CAS  Google Scholar 

  • Seto M, Nishibori K, Masai E, Fukuda M, Ohdaira Y (1999) Degradation of polychlorinated biphenyls by a ‘Maitake’ mushroom, Grifola frondosa. Biotechnol Lett 21:27–31

    Article  CAS  Google Scholar 

  • Shah MP (2014) An application of bioaugmentation strategy to decolorize and degrade reactive black dye by Pseudomonas spp. Int J Environ Bioremediat Biodegrad 2(2):50–54

    Google Scholar 

  • Shanmuga PM, Divyashree K, Goswami C, Lakshmi PM, Satheesh BAK (2013) Bioremediation of textile dyes by white rot fungi isolated from Western Ghats area. Int J Eng Adv Technol 2(4):913–918

    Google Scholar 

  • Shimada M, Akamatsu Y, Tokimatsu T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53(2–3):103–113

    Article  CAS  Google Scholar 

  • Shrivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb Technol 36:333–337

    Article  CAS  Google Scholar 

  • Singh D, Zeng J, Chen S (2011) Increasing manganese peroxidase productivity of Phanerochaete chrysosporium by optimizing carbon sources and supplementing small molecules. Lett Appl Microbiol 53:120–123

    Article  CAS  Google Scholar 

  • Sklenar J, Niku-Paavola ML, Santos S, Man P, Kruus K, Novotny C (2010) Isolation and characterization of novel pI 4.8 MnP isoenzyme from white-rot fungus Irpex lacteus. Enzyme Microb Technol 46:550–556

    Article  CAS  Google Scholar 

  • Spadaro JT, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes. Mechanism of disperse yellow 3 degradation. Arch Biochem Biophys 312(1):301–307

    Article  CAS  Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58(8):2397–2401

    CAS  Google Scholar 

  • Stahl PD, Christensen M (1992) In vitro mycelial interactions among members of a soil microfungal community. Soil Biol Biochem 24:309–316

    Article  Google Scholar 

  • Swamy J, Ramsay J (1994) Effects of Mn2+ and NH4+: concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Appl Microbiol Biotechnol 51:391–396

    Article  Google Scholar 

  • Taboada-Puig R, Lú-Chau T, Moreira M, Feijoo G, Martínez M, Lema J (2011) A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World J Microbiol Biotechnol 27:115–122

    Article  CAS  Google Scholar 

  • Tanaka H, Koike K, Itakura S, Enoki A (2009) Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme Microb Technol 45:384–390

    Article  CAS  Google Scholar 

  • Taprab Y, Johjima T, Maeda Y, Moriya S, Trakulnaleamsai S, Noparatnaraporn N, Ohkuma M, Kudo T (2005) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71(12):7696–7704

    Article  CAS  Google Scholar 

  • Tekere M, Ncube I, Read JS, Zvauya R (2001) Growth, dye degradation and lignolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 28:420–426

    Article  CAS  Google Scholar 

  • Tesfaw A, Assefa F (2014) Co-culture: a great promising method in single cell protein production. Biotechnol Mol Biol Rev 9(2):12–20

    Article  CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576

    Article  CAS  Google Scholar 

  • Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56:455–462

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526

    Article  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14(3):262–269

    Article  CAS  Google Scholar 

  • Tornberg K, Bååth E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soils 37:190–197

    CAS  Google Scholar 

  • Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77:687–692

    Article  CAS  Google Scholar 

  • Trejo-Hernandez MR, Lopez-Munguia A, Ramirez RQ (2001) Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem 36:635–639

    Article  CAS  Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17

    Article  CAS  Google Scholar 

  • Ujor VC (2010) The physiological response of the white-rot fungus, Schizophyllum commune to Trichoderma viride, during interspecific mycelial combat. PhD thesis, University of Westminster, UK

  • Velazquez-Cedeño MA, Farnet AM, Ferré E, Savoie JM (2004) Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia 96:712–719

    Article  Google Scholar 

  • Verma P, Madamwar D (2001) Production of ligninolytic enzymes for dyes decolorization by co-cultivation of white rot fungi: Pleurotus ostreatus and Phanerochaete chrysosporium under solid state fermentation. In: International conference on new horizons in biotechnology (Abs.), Trivandrum, India, p 105, 18–21 Apr 2001

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  Google Scholar 

  • Wang S, Nomura N, Nakajima T, Uchiyama H (2012) Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng 113(5):624–630

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vivo depolymerisation of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    Article  CAS  Google Scholar 

  • Warmink JA, Nazir R, Van Elsas JD (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312

    Article  CAS  Google Scholar 

  • Weissenfels WD, Klewer H-J, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    Article  CAS  Google Scholar 

  • White NA, Boddy L (1992) Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiol Lett 98:75–79

    Article  CAS  Google Scholar 

  • Wick LY, Remer R, Wurz B, Reichenbach J, Braun S, Scharfer F, Harms H (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505

    Article  CAS  Google Scholar 

  • Wick LY, Furuno S, Harms H (2010) Fungi as transport vectors for contaminants and contaminant-degrading bacteria. In: Timmis KN (ed) Handbook of hydrocarbons and lipid microbiology. Springer, Berlin, pp 1555–1561

    Chapter  Google Scholar 

  • Woolridge EM (2014) Mixed enzyme systems for delignification of lignocellulosic biomass. Catalysts 4:1–35

    Article  CAS  Google Scholar 

  • Xavier AMRB, Evtuguin DV, Ferreira RMP, Amado FL (2001) Laccase production for lignin oxidative activity. In: Proceedings of the 8th international conference on biotechnology in the pulp and paper industry, Helsinki, Finland, pp 4–8

  • Xu R, Obbard JP (2004) Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments. J Environ Qual 33:861–867

    Article  CAS  Google Scholar 

  • Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralisation of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29(10):1469–1473

    Article  CAS  Google Scholar 

  • Yan ZY, Sun XW, Li J, Liu XF, Yuan YX, Liao YZ (2013) Interaction of a mixed culture of two fungi as a means of improving laccase activity. Res J Biotechnol 8(10):3–9

    CAS  Google Scholar 

  • Yanto DHY, Hidayat A, Tachibana S (2016) Periodical biostimulation with nutrient addition and bioaugmentation using mixed fungal cultures to maintain enzymatic oxidation during extended bioremediation of oily soil microcosms. Biodegradation 116:112–123

    Article  CAS  Google Scholar 

  • Zadrazil F, Gonser A, Lang E (1999) Influence of incubation temperature on the secretion of extracellular ligninolytic enzymes of Pleurotus sp. and Dichomitus squalens into soil. In: Proceedings of the conference on enzymes in the environment: activity, ecology and applications, Granada, Spain, pp 12–16

  • Zhang JL, Qiao CL (2002) Novel approaches for remediation of pesticide pollutants. Int J Environ Pollut 18:423–433

    Article  CAS  Google Scholar 

  • Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM, Zhang XQ (2006) Efficient production of laccase by Trametes sp. AH28-2 in co-cultivation with a Trichoderma strain. Appl Microbiol Biotechnol 73:89–94

    Article  CAS  Google Scholar 

  • Zhou D, Zhang X, Du Y, Dong S, Xu Z, Yan L (2014) Insights into the synergistic effect of fungi and bacteria for reactive red decolorization. J Spectrosc  1:1–4

Download references

Acknowledgements

The authors would like to thank Oliver Wanjau for his unflinching support during the thought process for this review and Annie Monanga for proof reading and her constructive criticism that helped complete this review. We would also like to thank the anonymous reviewers they have in no small measures made this review a more insightful document. Funding was provided by National Student Financial Aid Scheme (Grant No. 54003/74721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ijoma.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijoma, G.N., Tekere, M. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. Int. J. Environ. Sci. Technol. 14, 1787–1806 (2017). https://doi.org/10.1007/s13762-017-1269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1269-3

Keywords

Navigation