Skip to main content
Log in

Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Soil samples from an agricultural field contaminated with 10 ppm14C-benz(a)anthracene in glass tubes were brought into contact with cultures of wood-rotting fungi, precultivated on wheat straw substrate. Forty-five strains of white-rot fungi and four brown-rot fungi were tested for their ability to colonize the soil and to mineralize14C-benz(a)anthracene to14CO2 within a 20-week incubation time. Twenty-two white-rot fungi and all brown-rot fungi were unable to colonize the soil. Twenty-three strains of white-rot fungi, all belonging to the genusPleurotus, colonized the soil. During the experiment the noncolonizing fungi and their substrate disintegrated more and more to a nonstructured pulp from which water diffused into the soil. The same phenomenon was observed in the control which contained only straw without fungus and contaminated soil. In samples with colonizing fungi the substrate as well as the mycelia in the soil remained visibly unchanged during the entire experiment. Surprisingly, most samples with fungi not colonizing the soil and the control without fungus liberated between 40 and 58 % of the applied radioactivity as14CO2 whereas the samples with the colonizing fungi respired only 15–25 % as14CO2. This was 3–5 times more14CO2 than that liberated from the control (4.9 %) which contained only contaminated soil without straw and fungus. A similar result was obtained with selected colonizing and noncolonizing fungi and soil contaminated with 10 ppm14C-pyrene. However, in pure culture studies in which14C-pyrene was added to the straw substrate,Pleurotus sp. (P2), as a representative of the colonizing fungi, mineralized 40.3 % of the added radioactivity to14CO2. The noncolonizing fungiDichomitus squalens andFlammulina velutipes liberated only 17.2 or 1.7 %, respectively, as14CO2. These results lead to the hypothesis that the native soil microflora stimulated by the formed products of straw lysis is responsible for high degradation rates found with noncolonizing fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bumpus J.A., Aust S.D.: Mineralization of recalcitrant environmental pollutants by a white rot fungus, pp. 146–151 inProc. Nat. Conf. Hazardous Wastes and Hazardous Materials. Hazardous Materials Control Research Institute, Silver Spring (Md) 1987.

    Google Scholar 

  • Bumpus J.A., Tien M., Wright D., Aust S.D.: Oxidation of persistent environmental pollutants by a white rot fungus.Science 228, 1434–1436 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia C.E., Campbell W.L., Freeman J.P., Evans F.E.: Identification of a novel metabolite in phenanthrene metabolism by the fungusCunninghamella elegans.Appl. Environ. Microbiol. 55, 2275–2279 (1989).

    PubMed  CAS  Google Scholar 

  • Cerniglia C.E., Gibson D.T.: Fungal oxidation of benzo(a)pyrene and (+)-trans-7,8-dihydroxy-7,8-dihydro-benzo(a)pyrene.J. Biol. Chem. 255, 5159–5163 (1980a).

    PubMed  CAS  Google Scholar 

  • Cerniglia C.E., Gibson D.T.: Fungal oxidation of (+)-9,10-dihydrobenzo(a)pyrene: Formation of diastereomeric benzo(a)-pyrene-9,10-diol-7,8-epoxides.Proc. Nat. Acad. Sci. USA 77, 4554–4558 (1980b).

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia C.E., Herbert R.L., Szaniszlo P.J., Gibson D.T.: Fungal transformation of naphthalene.Arch. Microbiol. 117, 135–143 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia C.E., White G.L., Heflich R.H.: Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons.Arch. Microbiol. 143, 105–110 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Davis M.W., Glaser J.A., Evans J.W., Lamar R.T.: Field evaluation of the lignin-degrading fungusPhanerochœte sordia to treat creosote-contaminated soil.Environ. Sci. Technol. 27, 2572–2576 (1993).

    Article  CAS  Google Scholar 

  • Eaton D.C.: Mineralization of polychlorinated biphenyls byPhanerochœte chrysosporium a lignolytic fungus.Enzyme Microb. Technol. 7, 194–196 (1985).

    CAS  Google Scholar 

  • Kästner M., Mahro B., Wienberg R.:Hamburger Berichte, Band 5 (R. Stegmann, Ed.):Biologischer Schadstoffabbau in kontaminierten Böden unter besonderer Berücksichtigung der polycyclischen aromatischen Kohlenwasserstoffe. Economia Verlag, Bonn 1993.

    Google Scholar 

  • Gibson D.T., Subramanian V.: Microbial degradation of aromatic hydrocarbons, pp. 184–252 inMicrobial Degradation of Organic Compounds (D.T. Gibson, Ed). Marcel Dekker, New York-Basel 1984.

    Google Scholar 

  • Higson F.K.: Degradation of xenobiotics by white rot fungi, pp. 111–152 inReviews of Environmental Contamination and Toxicology (W.W. Ware, H.N. Nigg, A. Benvenue, Eds), Vol. 122. Springer, Berlin-Heidelberg-New York 1991.

    Google Scholar 

  • Lamar R.T., Davis M.W., Dietrich D.M., Glaser J.A.: Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungusPhanerochœte sordia: A field demonstration.Soil Biol. Biochem. 26, 1603–1611 (1994).

    Article  CAS  Google Scholar 

  • Loske D., Hüttermann A., Majcherczyk A., Zadrazil F., Lorsen H.: Use of white rot fungi for the clean-up of contaminated sites, pp. 311–321 inAdvances in Biological Treatment of Lignocellulosic Materials (M.P. Coughlan, M.T.A. Collaco, Eds). Elsevier Applied Science, London 1990.

    Google Scholar 

  • Mueller J.G., Chapman P.J., Blatimann B.O., Pritchard P.H.: Isolation and characterization of a fluoranthene-utilizing strain ofPseudomonas paucimobolis.Appl Environ. Microbiol. 56, 1076–1086 (1990).

    Google Scholar 

  • Mueller J.G., Chapman P.J., Pritchard P.H.: Action of fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote.Appl. Environ. Microbiol. 55, 3085–3090 (1989).

    PubMed  CAS  Google Scholar 

  • National Research Council: In SituBioremediation. When Does It Work? National Academy Press, Washington (DC) 1993.

    Google Scholar 

  • Sanglard D., Leisola M.S.A., Fletscher A.: Role of extracellular ligninases in biodegradation of benzo(a)pyrene byPhanerochœte chrysosporium.Enzyme Microb. Technol. 8, 209–212 (1986).

    Article  CAS  Google Scholar 

  • Walter U., Beyer M., Klein J., Rehm H.J.: Degradation of pyrene byRhodococcus sp. UW1.Appl. Microbiol. Biotechnol. 34, 671–676 (1991).

    Article  CAS  Google Scholar 

  • Weissenfels W.D., Beyer M., Klein J.: Degradation of phenanthrene fluorene and fluoranthene by pure bacterial cultures.Appl. Microbiol. Biotechnol. 32, 479–484 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Weissenfels W.D., Beyer M., Klein J., Rehm H.J.: Microbial metabolism of fluoranthene: Isolation and identification of ring fission products.Appl. Microbiol. Biotechnol. 34 528–535 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, R., Zadrazil, F. Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43, 97–103 (1998). https://doi.org/10.1007/BF02815552

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815552

Keywords

Navigation