Skip to main content

Advertisement

Log in

Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris αMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4–7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kirk, T. K., & Cullen, D. (1998). In R. A. Young & M. Akhtar (Eds.), Environmentally friendly technologies for the pulp and paper industry (pp. 273–307). New York, NY: Wiley.

    Google Scholar 

  2. Harazono, K., Kondo, R., & Sakai, K. (1996). Applied and Environmental Microbiology, 62(3), 913–917.

    CAS  Google Scholar 

  3. Gu, L., Lajoie, C. A., & Kelly, C. J. (2003). Biotechnology Progress, 19(5), 1403–1409.

    Article  CAS  Google Scholar 

  4. Jiang, F., Kongsaeree, P., Charron, R., Lajoie, C., Xu, H., Scott, G., & Kelly, C. (2007). Biotechnology and Bioengineering (in press).

  5. Sutherland, G. R. J., & Aust, S. D. (1996). Archives of Biochemistry and Biophysics, 332(1), 128–134.

    Article  CAS  Google Scholar 

  6. Mielgo, I., Palma, C., Guisan, J. M., Fernandez-Lafuente, R., Moreira, M. T., Feijoo, G., et al. (2003). Enzyme and Microbial Technology, 32, 769–775.

    CAS  Google Scholar 

  7. Urek, R. O., & Pazarlioglu, N. K. (2004). Process Biochemistry, 39, 2061–2068.

    Article  CAS  Google Scholar 

  8. Shin, K. S., Kim, Y. H., & Lim, J. S. (2005). Journal of Microbiology, 43(6), 503–509.

    CAS  Google Scholar 

  9. Baborova, P., Moder, M., Baldrian, P., Cajthamlova, K., & Cajthaml, T. (2006). Research in Microbiology, 157(3), 248–253.

    Article  CAS  Google Scholar 

  10. Banci, L., Bartalesi, I., Ciofi-baffoni, S., Tien, M. (2003). Biopolymers, 72, 38–47.

    Article  CAS  Google Scholar 

  11. Sreekrishna, K., Barr, K. A., Hoard, S. A., Prevatt, W. D., Torregrosa, R. E., Levingston, R. E., et al. (1990). Topic 09-37B. In S. G. Oliver & R. Wickner (Eds.), 15th International Congress on Yeast Genetics and Molecular Biology, 1990, Hague, The Netherlands. Yeast, 6(Special Issue), S447.

  12. Jahic, M., Gustavsson, M., Jansen, A. K., Martinelle, M., & Enfors, S. O. (2003). Journal of Biotechnology, 102, 45–53.

    Article  CAS  Google Scholar 

  13. Cassland, P., & Josson, L. J. (1999). Applied Microbiology and Biotechnology, 52, 393–400.

    Article  CAS  Google Scholar 

  14. Clare, J. J., Romanos, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., et al. (1991). Gene, 105, 205–212.

    Article  CAS  Google Scholar 

  15. Cregg, J. M., Vedvick, T. S., & Raschke, W. C. (1993). Bio/Technology, 11, 905–910.

    Article  CAS  Google Scholar 

  16. Jönsson, L. J., Saloheimo, M., & Penttila, M. (1997). Current Genetics, 32, 425–430.

    Article  Google Scholar 

  17. Shi, X., Karkut, T., Chamankhah, M., Alting-Mees, M., Hemmingsen, S. M., & Hegedus, D. (2003). Protein Expression and Purification, 28(2), 321–330.

    Article  CAS  Google Scholar 

  18. Sinha, J., Plantz, B. A., Zhang, W., Gouthro, M., Schlegel, V., Liu, C. P., et al. (2003). Biotechnology Progress, 19, 794–802.

    Article  CAS  Google Scholar 

  19. Sinha, J., Plantz, B. A., Inan, M., & Meagher, M. M. (2004). Biotechnology and Bioengineering, 89(1),102–112.

    Article  Google Scholar 

  20. Damasceno, L. M., Pla, I., Chang, H. J., Cohen, L., Ritter, G., Old, L. J., et al. (2004). Protein Expression and Purification, 37(1), 18–26.

    Article  CAS  Google Scholar 

  21. Werten, M. W. T., Bosch, T. J. V. D., Wind, R. D., Mooibroek, H., & Wolf, F. A. D. (1999). Yeast, 15, 1087–1096.

    Article  CAS  Google Scholar 

  22. Zhu, A., Monahan, C., Zhang, Z., Hurst, R., Leng, L., & Goldstein, J. (1995). Archives of Biochemistry and Biophysics, 324(1), 65–70.

    Article  CAS  Google Scholar 

  23. Clare, J., Scorer, C., Buckholz, R., & Romanos, M. (1998). Methods in Molecular Biology, 103, 209–225.

    CAS  Google Scholar 

  24. Bencurova, M., Rendic, D., Fabini, G., Kopecky, E. M., Altmann, F., & Wilson, I. B. H. (2003). Biochimie, 85, 413–422.

    Article  CAS  Google Scholar 

  25. Li, Z., Xiong, F., Lin, Q., d’Anjou, M., Daugulis, A. J., Yang, D. S. C., et al. (2001). Protein Expression and Purification, 21(3), 438–445.

    Article  Google Scholar 

  26. Whittaker, M. M., & Whittaker, J. W. (2000). Protein Expression and Purification, 20(1), 105–111.

    Article  CAS  Google Scholar 

  27. Pritchett, J., & Baldwin, S. A. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 553–558.

    Article  CAS  Google Scholar 

  28. Inan, M., Chiruvolu, V., Eskridge, K. M., Vlasuk, G. P., Dickerson, K., Brown, S., et al. (1999). Enzyme and Microbial Technology, 24, 438–445.

    Article  CAS  Google Scholar 

  29. Ohya, T., Morita, M., Masami, M., Shinobu, K., & Kaoru, K. (2002). Journal of Bioscience and Bioengineering, 94(5), 467–473.

    CAS  Google Scholar 

  30. Saelens, X., Vanlandschoot, P., Martinet, W., Maras, M., Neirynck, S., Contreras, R., et al. (1999). European Journal of Biochemistry, 260, 166–175.

    Article  CAS  Google Scholar 

  31. Hong, F., Meinander, N. Q., & Jönsson, L. J. (2002). Biotechnology and Bioengineering, 79, 438–449.

    Article  CAS  Google Scholar 

  32. Sarramegna, V., Demange, P., Milon, A., & Talmont, F. (2002). Protein Expression and Purification, 24, 212–220.

    Article  CAS  Google Scholar 

  33. Wariishi, H., Valli, K., & Gold, M. H. (1992). Journal of Biological Chemistry, 267, 23688–23695.

    CAS  Google Scholar 

  34. Tien, M., & Kirk, T. K. (1983). Science, 221(4611), 661–663.

    Article  CAS  Google Scholar 

  35. Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2002). Bioresource Technology, 82(3), 285–289.

    Article  CAS  Google Scholar 

  36. Wang, J., & Chen, C. (2006). Biotechnology Advances, 24(2), 427–451.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation grants BES-0536128 and BES-0328031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Kongsaeree, P., Schilke, K. et al. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability. Appl Biochem Biotechnol 146, 15–27 (2008). https://doi.org/10.1007/s12010-007-8039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8039-5

Keywords

Navigation