Skip to main content
Log in

Lignin biochemistry: Biosynthesis and biodegradation

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Lignin biosynthesis via shikimate-cinnamate pathways in plants, and the biosynthetic differences of guaiacyl-and syringyl lignins between gymnosperms and angiosperms have been elucidated by tracer experiments using 14C labeled precursors and the following enzyme reactions. The formation of guaiacyl lignin but not syringyl lignin in gymnosperms was attributed to the following factors; absence of ferulate-5-hydroxylase, poor affinity of O-methyltransferase toward 5-hydroxyferulate, and lack of activation and/or reduction of sinapatc. A mechanism of lignin-carbohydrate complexes formation in wood cell walls was elucidated based on the reaction of the quinone methide of guaiacylglycerol-β-guaiacyl ether with sugars, and the analysis of DHP-polysaccharide complexes.

The main cleavage mechanisms of side chains and aromatic rings of lignin model compounds and synthetic lignin (DHP) by white-rot fungi and their enzymes, lignin peroxidase and laccase have been elucidated using 2H, 13C and 18O-labeled lignin substructure dimcrs with 18O2 and H2 18O. Side chains and aromatic rings of these substrates were cleaved via aryl cation radical and phenoxy radical intermediates, in reaction mediated only by lignin peroxidase/H2O2 and laccase/O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Biosynthesis of lignin

  • Acerbo, S. N.; Schubert, W. J.; Nord, F. F. 1960: Investigations on lignins and lignification XXII. The conversion of d-glucose into lignin in Norway spruce. J. Amer. Chem. Soc. 82: 725–739

    Google Scholar 

  • Adler, E. 1977: Lignin chemistry — past, present and future. Wood Sci. Technol. 11: 169–218

    Google Scholar 

  • Bland, D. E. 1963: Lignification in Eucalyptus. Incorporation of phenylalanine, tyrosinc and methionine into Eucalyptus sideroxylon and Eucalyptus camaldulensis. Biochem. J. 88: 523–525

    Google Scholar 

  • Brown, S. A.; Neish, A. C. 1955a: Shikimic acid as a precursor in lignin biosynthesis. Nature 175: 688–690

    Google Scholar 

  • Brown, S. A.; Neish, A. C. 1955b: Studies of lignin biosynthesis using isotopic carbon IV. Formation from some aromatic monomers. Can. J. Biochem. Physiol. 33: 948–962

    Google Scholar 

  • Brown, S. A.; Neish, A. C. 1956: Studies of lignin biosynthesis using isotopic carbon V. Comparative studies on different plant species. Can. J. Biochem. Physiol. 34: 767–778

    Google Scholar 

  • Brown, S. A.: Neish, A. C. 1959: Studies of lignin biosynthesis using isotopic carbon VIII. Isolation of radioactive hydrogenolysis products of lignins. J. Amer. Chem. Soc. 81: 2419–2424

    Google Scholar 

  • Brown, S. A. 1961: Chemistry of lignification. Science 134: 305–313

    Google Scholar 

  • Davis, B. D. 1955: Intermediates in amino acid biosynthesis. Adv. Enzymology 16: 247–312

    Google Scholar 

  • Ebel, H.; Grisebach, H. 1973: Reduction of cinnamic acids to cinnamyl alcohols with an enzyme preparation from cell suspension cultures of soybean. (Glycine max) FEBS Lett. 30: 141–143

    Google Scholar 

  • Eberhardt, G.; Schubert, W. J. 1956: Investigations on lignins and lignification XVII. Evidence for the mediation of shikimic acid in the biogenesis of lignin building stone. J. Amer. Chem. Soc. 78: 2835–2837

    Google Scholar 

  • Elstner, E. F.; Heupel, A. 1976: Formation of hydrogen peroxide by isolated cell walls from horseradish (Aromoracia lapathifolia Gilib.). Planta 130: 175–180

    Google Scholar 

  • Eriksson, O.; Goring D. A. I.; Lindgren, B. O. 1980: Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol. 14: 267–279

    Google Scholar 

  • Finkle, B. J.; Nelson, R. F. 1963: Enzyme reactions with phenolic compounds: a meta-O-methyl-transferase in plants. Biochim. Biophys. Acta 76: 747–749

    Google Scholar 

  • Finkle, B. J.; Masri, M. S. 1964: Methylation of polyhydroxyaromatic compounds by pampas grass O-methyltransferase. Biochim. Biophys. Acta 85: 167–169

    Google Scholar 

  • Freudenberg, K.; Kraft, R.; Heimberger, W. 1951: Über den Sinapin alkohol, den Coniferyl alkohol und ihre Dehydrierungspolymerisate. Chem. Ber. 84: 472–476

    Google Scholar 

  • Freudenberg, K.; Niedercorn, F. 1958: Anwendung radioaktiver Isotope bei der Erforschung des Lignins VIII. Umwandlung des Phenylalanins in Coniferin und Fichtenlignin. Cem. Ber. 91: 591–597

    Google Scholar 

  • Freudenberg, K.; Grion, G. 1959: Beitrag zum Bildungsmechanisms des Lignins und der Lignin-Kohlenhydralbindung. Chem. Ber. 92: 1355–1363

    Google Scholar 

  • Freudenberg, K. 1965: Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148: 595–600

    Google Scholar 

  • Freudenberg, K. 1968: The constitution and biosynthesis of lignin. In: Freudenberg, K.; Neish, A. C.eds: Constitution and Biosynthesis of Lignin Berlin: Springer 47–122

    Google Scholar 

  • Fujita, M.; Saiki, H.; Harada, H. 1983: Deposition of cellulose, hemicelluloses and lignin in the differentiating tracheids. Proc. 1983 Intern. Symp. Wood Pulping Chemistry 1: 14–19

    Google Scholar 

  • Gamborg, O. L.; Neish, A. C. 1959: Biosynthesis of phenylalanine and tyrosine in young wheat and buckwheat plants. Can. J. Bochem. Physiol. 37: 1277–1285

    Google Scholar 

  • Gamborg, O. L. 1967a: Aromatic metabolism in plants V. The biosynthesis of chlorogenic acid and lignin in potato cell cultures. Can. J. Biochem. 45: 1451–1457

    Google Scholar 

  • Gamborg, O. L. 1967b: Aromatic metabolism in plants IV. The interconversion of shikimic acid and quinic acid by enzymes from plant cell cultures. Phytochem. 6: 1067–1073

    Google Scholar 

  • Goldschmidt, O.; Quimby, G. R. 1964: The role of quinic acid. Tappi 47: 528–533

    Google Scholar 

  • Grand, C.; Boudet, A.; Boudet, A. M. 1983: Isoenzymes of hydroxycinnamate: CoA ligase from poplar steins. Properties and tissue distribution. Planta 158: 225–229

    Google Scholar 

  • Grand, C. 1984: Ferulic acid-5-hydroxylase: a new cytochrome P-450 dependent enzyme from higher plant microsomes involved in lignin biosynthesis FEBS Lett. 169: 7–11

    Google Scholar 

  • Gross, G. G. 1977: Biosynthesis of lignin and related monomers Recent Adv. in Phytochemistry 11: 141–187

    Google Scholar 

  • Gross, G. G.; Janse, C.; Elstner, E. F. 1977: Involvement of malate, monophenols, and superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Aromoracia lapathifolia Gilib). Planta 136: 271–276

    Google Scholar 

  • Harkin, J. M.; Obst, T. R. 1973: Lignification in trees: indication of exclusive peroxidase participation. Science 180: 296–297

    Google Scholar 

  • Hasegawa, M.; Nakagawa, T.; Yoshida, S. 1957: Occurrence of shikimic acid in plant tissues II. J. Jpn. Forest Soc. 39: 159–163

    Google Scholar 

  • Hasegawa, M.; Higuchi, T.; Ishikawa, H. 1960: Formation of lignin in tissue culture of Pinus strobus. Plant & Cell Physiology 1: 173–182

    Google Scholar 

  • Hasegawa, M.; Higuchi, T. 1960: Formation of lignin from glucose in Eucalyptus tree. J. Jpn. Forest. Soc. 42: 305–308

    Google Scholar 

  • Hahlbrock, K.; Grisebach, H. 1979: Enzymic control in the biosynthesis of lignin and flavonoids. Ann. Rev. Plant Physiology 30: 105–130

    Google Scholar 

  • Hess, D. 1964a: Methionin als Methylgruppendonator für Zimtsäure and Anthocyane. Z. Naturforsch. 16b: 148–150

    Google Scholar 

  • Hess, D. 1964b: Der Einbau Methylgruppen-markierter Ferulasäure und Siapinsäure in die Anthocyane von Petunia hybrida. Planta 60: 568–581

    Google Scholar 

  • Hess, D. 1965: Vergleich der methylierendcn Potenzen von Genotypen mit verschiedenartig methylierten Anthocyanen im zellfreien System. Z. Pflanzenphysiol. 53: 1–18

    Google Scholar 

  • Higuchi, T. 1958: Further studies on phenol oxidase related to the lignin biosynthesis. J. Biochem. (Japan) 45: 515–528

    Google Scholar 

  • Higuchi, T.; Ito, Y. 1958: Dehydrogenation products of coniferyl alcohol formed by the action of mashroom phenol oxidase, rhus-laccase and radish peroxidase. J. Biochem. (Japan) 45: 575–579

    Google Scholar 

  • Higuchi, T. 1959: Studies on the biosynthesis of lignin. In: Kratzl, K.; Billek, G. (eds): Biochemistry of Wood. New York: Pergamon Press 161–188

    Google Scholar 

  • Higuchi, T. 1962: Studies of lignin biosynthesis using isotopic carbon X. Formation of lignin from phenylpropanoids in tissue culture of white pine. Can. J. Biochem. Physiol. 40: 31–34

    Google Scholar 

  • Higuchi, T.; Brown, S. A. 1963a: Studies of lignin biosynthesis using isotopic carbon XII. The biosynthesis and metabolism of sinapic acid. Can. J. Biochem. Physiol. 41: 613–620

    Google Scholar 

  • Higuchi, T.; Brown, S. A. 1963 b: Studies of lignin biosynthesis using isotopic carbon XIII. The phenylpropanoid system in lignification. Can. J. Biochem. Physiol. 41: 621–628

    Google Scholar 

  • Higuchi, T.; Barnoud, F. 1964: Les lignines les tissus végétaux cultivés in vitro. Chimie Biochimie de la Lignine, Cellulose, Hémicelluloses. Les Imprieries Réunies de Chambéry 255–274

  • Higuchi, T. 1966: Role of phenylalanine deaminase and tyrase in the lignification of bamboo. Agric. Biol. Chem. 30: 667–673

    Google Scholar 

  • Higuchi, T.; Ito, Y.; Kawamura, I. 1967a: p-Hydroxyphenylpropane component of grass lignin and role of tyrosine ammonia-lyase in its formation. Phytochem. 6: 875–881

    Google Scholar 

  • Higuchi, T.; Shimada, M.; Ohashi, H. 1967b: Role of O-methyltransferase in the lignification of bamboo. Agric. Biol. Chem. 31: 1459–1465

    Google Scholar 

  • Higuchi, T.; Shimada, M.; Nakatsubo, F.; Tanahashi, M. 1977: Differences in biosynthesis of guaiacyl and syringyl lignins in woods. Wood Sci. Technol. 11: 153–167

    Google Scholar 

  • Higuchi, T. 1983: Biosynthesis and microbial degradation of lignin. In: Akazawa, T.; Asahi, T.; Imaseki, H. (eds) The New Frontiers in Plant Biochemistry. Tokyo: Japan Sci. Soc. Press 23–46

    Google Scholar 

  • Higuchi, T. 1985: Biosynthesis of lignin. In: Higuchi, T. (ed) Biosynthesis and Biodegradation of Wood Components Orlando: Academic Press 141–160

    Google Scholar 

  • Hill, A. C.; Rhodes, M. J. C. 1975: The properties of cinnamic-4-hydroxylase of aged swede root disks. Phytochem., 14: 2387–2391

    Google Scholar 

  • Kawamura, I.; Higuchi, T. 1964: Comparative studies of milled wood lignins from different taxonomical origins by IR spectrometry. Chimie Biochimie de la Lignine, Cellulose, Hémicelluloses. Les Imprimeries Réunies de Chambéry 439–456

  • Koukol, J.; Conn, E. E. 1961: The metabolism of aromatic compounds in higher plants IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236: 2692–2698

    Google Scholar 

  • Kratzl, K.; Faigle, H. 1959: Der Einbau von d-Glucose-1-14C in das Phenylpropanegerüst des Fichtenlignins. Monatsh. Chem. 90: 768–770

    Google Scholar 

  • Kuroda, H.; Shimada, M.; Higuchi, T. 1975: Purification and properties of O-methyltransferase involved in the biosynthesis of gymnosperm lignin. Phytochem. 14: 1759–1763

    Google Scholar 

  • Kutsuki, H.; Higuchi, T. 1981: Activities of some enzymes of lignin formation in reaction woods of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia. Planta 152: 365–368

    Google Scholar 

  • Kutsuki, H.; Shimada, M.; Higuchi, T. 1982a Distribution and role of p-hydroxycinnamate: CoA ligase in lignin biosynthesis. Phytochem. 21: 267–271

    Google Scholar 

  • Kutsuki, H.; Shimada, M.: Higuchi, T. 1982b: Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochem. 21: 19–23

    Google Scholar 

  • Lewis, N. G.; Yamamoto, E.; Wooten, J. B.; Just, G.; Ohashi, H.; Towers, G. H. N. 1987: Monitoring biosynthesis of wheat cell wall phenylpropanoids in situ. Science 237: 1344–1346

    Google Scholar 

  • Mansell, R. L.; Stöckigt, J.; Zenk, M. H. 1972: Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant. Z. Pflanzenphysiol. 68: 286–288

    Google Scholar 

  • Mansell, R. L.; Gross, G. G.; Stöckigt, J.; Frank, H.; Zenk, M. H. 1974: Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochem. 13: 2427–2435

    Google Scholar 

  • McCalla, D. R.; Neish, A. C. 1959a: Metabolism of phenylpropanoid compounds in Salvia I. Biosynthesis of phenylalanine and tyrosine. Can. J. Biochem. Physiol. 37: 531–536

    Google Scholar 

  • McCalla, D. R.; Neish, A. C. 1959b: Metabolism of phenylpropanoid compounds in Salvia II. Biosynthesis of phenolic cinnamic acids. Can. J. Biochem. Physiol. 37: 537–547

    Google Scholar 

  • Minamikawa, T.; Koshiba, K. 1981: Synthesis of phenylpropanoids, In: Asahi, T. (ed) Metabolism I. Plant Physiology (in Japanese) Tokyo: Asakura Shoten 215–222

    Google Scholar 

  • Monties, B. 1985: Recent advances on lignin inhomogeneity. In: Van Sumere, C. F.; Lea, P. J. (eds) Annu. Proceedings of Phytochem. Soc. Europe 25: 161–181 Oxford: Clarendon Press

    Google Scholar 

  • Musha, Y.; Goring, D. A. I. 1975: Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci. Technol. 9: 45–58

    Google Scholar 

  • Nakamura, W. 1967: Studies on the biosynthesis of lignin I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem. (Japan) 62: 54–60

    Google Scholar 

  • Nakamura, Y.; Higuchi, T. 1976: Ester linkage of p-coumaric acid in bamboo lignin. Holzforsch. 30: 187–191

    Google Scholar 

  • Nakamura, Y.; Higuchi, T. 1978a: Ester linkages of p-coumaric acid in bamboo lignin II. Syntheses of coniferyl p-hydroxybenzoate and coniferyl p-coumarate as possible precursors of aromatic acid esters in lignin. Cellulose Chem. Technol. 12: 199–208

    Google Scholar 

  • Nakamura, Y.; Higuchi, T. 1978b: Ester linkage of p-coumaric acid in bamboo lignin III. Dehyrogenative polymeriozation of coniferyl p-hydroxybenzoate and coniferyl p-coumarate. Cellul. Chem. Technol. 12: 209–221

    Google Scholar 

  • Nakamura, Y.; Fushiki, H.; Higuchi, T. 1974: Metabolic differences between gymnosperms and angiosperms in the formation of syringyl lignin. Phytochem. 13: 1777–1784

    Google Scholar 

  • Neish, A. C. 1961: The formation of m- and p-coumaric acids by enzymatic deamination of the corresponding isomers of tyrosine. Phytochem. 1: 1–24

    Google Scholar 

  • Neish, A. C. 1968: Monomeric intermediates in the biosynthesis of lignin. In: Freudenberg, K.; Neish, A. C.: Constitution and Biosynthesis of Lignin. Berlin: Springer-Verlag 3–37

  • Ohashi, H.; Yamamoto, E.; Lewis, N. G.; Towers, G. H. N. 1987: 5-Hydroxyferulic acid in Zeamays and Hordeum vulgare cell walls. Phytochem. 26: 1915–1916

    Google Scholar 

  • Potts, J. R. M.; Weklych, R.; Conn, E. E. 1974: Metabolism of aromatic compounds in higher plants XI. 4-Hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J. Biol. Chem. 249: 5019–5026

    Google Scholar 

  • Poulton, J. E. 1981: Transmethylation and demethylation reactions in the metabolism of secondary plant products. In: Conn, E. E. (ed) The Biochemistry of Plants 7: 667–723 New York: Academic Press

    Google Scholar 

  • Rhodes, M. J. C.; Wooltorton, L. S. C. 1975: Enzymes involved in the reduction of ferulic acid to coniferyl alcohol during the aging of discs of swede root tissues. Phytochem. 14: 1235–1240

    Google Scholar 

  • Russell, D. W. 1971: The metabolism of aromatic compounds in higher plants. J. Biol. Chem. 246: 3870–3878

    Google Scholar 

  • Sakakibara, A. 1983: Chemical structure of lignin related mainly to degradation products. In: Higuchi, T.; Chang, H-m.; Kirk, T. K. (eds): Recent Advances in Lignin Biodegradation Research. Tokyo: UNI Publisher 12–33

    Google Scholar 

  • Saleh, T. M.; Leney, L.; Sarkanen, K. V. 1967: Radioautographic studies of cotton wood, Douglas fir and wheat plants. Holzforsch. 21: 116–120

    Google Scholar 

  • Sarni, F.; Grand, C.; Boudet, A. M. 1984: Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus x euramericana). Eur. J. Biochem. 139: 257–265

    Google Scholar 

  • Shimada, M.; Ohashi, H.; Higuchi, T. 1970: O-Methyltransferases involved in the biosynthesis of lignins. Phytochem. 9: 2463–2470

    Google Scholar 

  • Shimada, M.; Fushiki, H.; Higuchi, T. 1973a: Metabolism of biochemical formation of the methoxyl groups in soft and hardwood lignins. Mokuzai Gakkaishi 19: 13–21

    Google Scholar 

  • Shimada, M.; Kuroda, H.; Higuchi, T. 1973b: Evidence for the formation of methoxyl groups of ferulic and sinapic acids in Bambusa by the same O-methyltransferase. Phytochem. 12: 2873–2875

    Google Scholar 

  • Siehl, D. L.; Conn, E. E. 1988: Kinetics and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L) Moench. Arch. Biochem. Biophys. 260: 822–829

    Google Scholar 

  • Sprinson, D. B. 1960: The biosynthesis of aromatic compounds from d-glucose. Adv. Carbohydrate Chemistry 15: 235–270

    Google Scholar 

  • Stöckigt, J.; Mansell, R. L.; Gross, G. G.; Zenk, M. H. 1973: Enzymic reduction of p-coumaric acid via p-coumaroyl-CoA to p-coumaryl alcohol by a cell free system from Forsythia sp. Z. Pflanzenphysiol. 70: 305–307

    Google Scholar 

  • Takahashi, N.; Koshijima, T. 1988: Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci. Technol. 22: 231–241

    Google Scholar 

  • Tanahashi, M.; Aoki, T.; Higuchi, T. 1981: Dehydrogenative polymerization of monolignols by peroxidase and H2O2 in a dialysis tube III. Formation of lignin-carbohydrate complexes (LCCs). Mokuzai Gakkaishi 27: 116–124

    Google Scholar 

  • Tanaka, K.; Nakatsubo, F.; Higuchi, T. 1976: Reaction of guaiacylglycerol-β-guaiacyl ether with sugars I. Reaction of quinone methide with d-glucuronic acid. Mokuzai Gakkaishi 22: 587–590

    Google Scholar 

  • Tanaka, K.; Nakatsubo, F.; Higuchi, T 1979: Reaction of guaiacylglycerol-β-guaiacyl ether with sugars II. Reaction of quinone methide with pyranohexoses. Mokuzai Gakkaishi 25: 653–659

    Google Scholar 

  • Terashima, N.; Fukushima, K. 1988: Heterogeneity in formation of lignin XI. An autradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci. Technol. 22: 259–270

    Google Scholar 

  • Vaughan, P. F. T.; Butt, V. S. 1970: The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach beet (Beta vulagaris L.). Biochem. J. 119: 89–94

    Google Scholar 

  • Wardrop, A. B.; Bland, D. E. 1959: The process of lignification in woody plants. In: Kratzl, K.; Billek, G. (eds): Biochemistry of Wood. New York: Pergamon Press 92–116

    Google Scholar 

  • Weinstein, L. H.; Porter, C. A.; Laurencot, H. J. 1959a: Evidence for the conversion of quinic acid to shikimic acid in roses. Nature 183: 326

    Google Scholar 

  • Weinstein, L. H.; Porter, C. A.; Laurencot, H. J. 1959b: Quinic acid as a precursor in aromatic biosynthesis in the rose. Contrib. Boyce Thompson Inst. 20: 121–134

    Google Scholar 

  • Weinstein, L. H.; Porter, C. A.; Laurencot, H. J. 1961: Role of quinic acid in aromatic biosynthesis in higher plants. Contrib. Boyce Thompson Inst. 21: 201–214

    Google Scholar 

  • Yoshida, S. 1969: Biosynthesis and conversion of aromatic amino acids in plants. Annu. Rev. Plant Physiol. 20: 41–62

    Google Scholar 

  • Young, M. R.; Towers, G. H. N.; Neish, A. C. 1966: Taxonomic distribution of ammonia-lyases for l-phenylalanine and l-tyrosine in relation to lignification. Can. J. Botany 44: 34–349

    Google Scholar 

  • Asada, Y; Kimura, Y; Kuwahara, M.; Tsukamoto, A.; Koide, K.; Oka, A.; Takanami, M. 1988: Cloning and sequencing of a ligninase gene from a lignin degrading basidiomycete, Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 29: 469–473

    Google Scholar 

  • Biswas-Hawkes, D.; Dodson, A. P. J.; Harvey, P. J.; Palmer, J. M. 1987: Ligninases from white-rot fungi. In: Odier, E. (ed) Lignin Enzymatic and Microbial Degradation. Paris: INRA 125–130

    Google Scholar 

  • Boudet, A. M.; Grand, C. 1988: Lignin synthesis inhibitors: Potential tools for improving nutritional value of plant crops. Plant Growth Regulators and Agricultural Uses, in press

  • Boudet, A. M. 1988: Personal communication

  • Cain, R. B. 1980: The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms. In: Kirk, T. K.; Higuchi, T.; Chang, H.-m. (eds) Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications I: 21–60 Boca Raton: CRC Press

  • Chang, H.-m.; Chen, C.-L.; Kirk, T. K. 1980: The chemistry of lignin degradation by white-rot fungi. In: Kirk, T. K.; Higuchi, T.; Chang, H.-m. (eds) Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications I: 215–230 Boca Raton: CRC Press

  • Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1982a: Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforsch. 36: 3–9

    Google Scholar 

  • Chen, C.-L.; Chua, M. G. S.; Evans, J.; Chang, H.-m.; Kirk, T. K. 1982b: 13C-NMR spectroscopic study of spruce lignin degraded by Phanerochaete chrysosporium II. Synthesis and chemical shift of model compounds. Holzforsch. 3: 239–247

    Google Scholar 

  • Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1983: Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J. Wood Chem. Technol. 3: 35–57

    Google Scholar 

  • Chen, C.-L.; Chang, H.-m. 1985: Chemistry of lignin biodegradation. In: Higuchi (ed) Biosynthesis and Biodegradation of Wood Components. Orlando: Academic Press 535–556

    Google Scholar 

  • Chua, M. G. S.; Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1982: 13C-NMR spectroscopic study of spruce lignin degraded by Phanerochaete chrysosporium I. New structures. Holzforsch. 36: 165–172

    Google Scholar 

  • Enoki, A.; Goldsby, G. P.; Gold, M. H. 1980: Metabolism of the lignin model compounds veratrylglycerol-β-guaiacyl ether and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether by Phanerochaete chrysosporium. Arch. Microbiol. 125: 227–232

    Google Scholar 

  • Enoki, A.; Gold, M. H. 1982: Degradation of the diarylpopane lignin model compound 1-(3′, 4′-diethoxyphenyl)-1,3-dihydroxy-2-(4″-methoxyphenyl)propane and derivatives by the basidiomycete Phanerochaete chrysosporium. Arch. Microbiol. 132: 123–130

    Google Scholar 

  • Eriksson, K.-E.; Petterson, B.; Vole, J.; Musilek, V. 1986: Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. App. Microbiol. Biotechnol. 23: 257–262

    Google Scholar 

  • Farrell, R. L. 1987: A new key enzyme for lignin degradation. Enzyme Engineering 8, 501: 150–158

    Google Scholar 

  • Fukuzumi, T.; Shibamoto, T. 1965: Enzymatic degradation of lignin IV. Splitting of veratryl-glycerol-β-guaiacyl ether by enzyme of Poria subacida. Mokuzai Gakkaishi 11: 248–252

    Google Scholar 

  • Gierer, J.; Imsgard. F. 1977: Studies on the autoxidation of t-butyl-substituted phenols in aklaline media 1. Reactions of 4-t-butylguaiacol. Acta Chem. Scand. B 31: 537–545

    Google Scholar 

  • Glenn, J. K.; Morgan, M. A.; Mayfield, M. B.; Kuwahara, M.; Gold, M. H. 1983: An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 114: 1077–1083

    Google Scholar 

  • Habe, T.; Shimada, M.; Umezawa, T.; Higuchi, T. 1985: Evidence for deuterium retention in the products after enzymatic C-C and ether bond cleavages of deuterated lignin model compounds. Agric. Biol. Chem. 49: 3505–3510

    Google Scholar 

  • Haemmerli, S. D.; Leisola, M. S. A.; Fiechter, A. 1986: Polymerization of lignins by ligninase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 35: 33–36

    Google Scholar 

  • Hata, K. 1966: Investigations on lignins and lignification XXXIII. Studies on lignins isolated from spruce wood decayed by Poria subacida. Holzforsch. 20: 142–147

    Google Scholar 

  • Hattori, T.; Shimada, M.; Umezawa, T.; Higuchi, T.; Leisola, M. S. A.; Fiechter, A. 1988: New mechanism for oxygenative ring cleavage of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase model. Agric. Biol. Chem. 52: 879–880

    Google Scholar 

  • Henderson, M. E. K. 1961: The metabolism of aromatic compounds related to lignin by some hymenomycetes and yeast-like fungi of soil. J. Gen. Microbiol. 26: 155–165

    Google Scholar 

  • Higuchi, T.; Kawamura, I.; Kawamura, H. 1955: Properties of the lignin in decayed wood. J. Jpn. Forest. Soc., 37: 298–302

    Google Scholar 

  • Higuchi, T.; Nakatsubo, F. 1980: Synthesis and biodegradation of oligolignols. Kemia-Kemi 9: 481–488

    Google Scholar 

  • Higuchi, T. 1985: Degradative pathways of lignin model compounds. In: Higuchi (ed) Biosynthesis and Biodegradation of Wood Components. Orlando: Academic Press 557–578

    Google Scholar 

  • Higuchi, T. 1986: Catabolic pathways and role of ligninases for the degradation of lignin substructure models by white-rot fungi. Wood Research (Kyoto) 73: 58–81

    Google Scholar 

  • Higuchi, T. 1988: Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. Proc. ACS Symp. Biogenesis and Biodegradation of Plant Cell Wall Polymers 482–502

  • Ishikawa, H.; Schubert, W. J.; Nord, F. F. 1963a: Investigation on lignins and lignification XXVII. The enzymic degradation of softwood lignin by white-rot fungi. Arch. Biochem. Biophys. 100: 131–139

    Google Scholar 

  • Ishikawa, H.; Schubert, W. J.; Nord, F. F. 1963b: Investigations of lignins and lignification XXVIII. The degradation by Polyporus versicolor and Fomes formentarius of aromatic compounds structurally related to softwood lignin. Arch. Biochem. Biophys. 100: 140–149

    Google Scholar 

  • Kamaya, Y.; Higuchi, T. 1983: Degradation of d,l-syringaresinol and its derivatives, β-β linked lignin substructure models by Phanerochaete chrysosporium. Mokuzai Gakkaishi, 29: 789–794

    Google Scholar 

  • Kamaya, Y.; Higuchi, T. 1984a: Metabolism 1,2-disyringylpropane-1,3-diol by Phanerochaete chrysosporium. Mokuzai Gakkaishi 30: 237–239

    Google Scholar 

  • Kamaya, Y.; Higuchi, T. 1984b: Metabolism of nonphenolic diarylpropane lignin substructure model compound by Coriolus versicolor. FEMS Microbiol. Lett. 22: 89–92

    Google Scholar 

  • Kawai, S.; Umezawa, T.; Higuchi, T. 1985: Arylglycerol-γ-formyl ester as an aromatic ring cleavage product of nonphenolic β-O-4 lignin substructure model compounds degraded by Coriolus versicolor. Appl. Environ. Microbiol. 50: 1505–1508

    Google Scholar 

  • Kawai, S.; Umezawa, T.; Shimada, M.; Higuchi, T.; Koide, K.; Nishida, T.; Morohoshi, N.; Haraguchi, T. 1987: Cα-Cβ cleavage of phenolic β-1 lignin substructure model compound by laccase of Coriolus versicolor. Mokuzai Gakkaishi 33: 792–797

    Google Scholar 

  • Kawai, S.; Umezawa, T.; Higuchi, T. 1988a: Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262: 99–110

    Google Scholar 

  • Kawai, S.; Umezawa, T.; Shimada, M.; Higuchi, T. 1988b: Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett. 236: 309–311

    Google Scholar 

  • Kawai, S.; Umezawa, T.; Higuchi, T. 1989: Proc. Biotechnol. Pulp + Paper Man. Butterworth Publ. in press

  • Kelley, R. L.; Reddy, C. A. 1986: Identification of glucose oxidase activity as primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch. Microbiol. 144: 248–253

    Google Scholar 

  • Kersten, P. J.; Tien, M.; Kalyanaraman, B.; Kirk, T. K. 1985: The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J. Biol. Chem. 260: 2609–2612

    Google Scholar 

  • Kersten, P. J.; Kirk, T. K. 1987: Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J. Bacteriol. 169: 2195–2202

    Google Scholar 

  • Kirk, T. K.; Chang, H.-m. 1974: Decomposition of lignin by white-rot fungi I. Isolation of heavily degraded lignins from decayed spruce. Holzforsch. 28: 218–222

    Google Scholar 

  • Kirk, T. K.; Chang, H.-m. 1975: Decomposition of lignin by white-rot fungi II. Characterization of heavily degraded lignins from decayed spruce. Holzforsch. 29: 56–64

    Google Scholar 

  • Kirk, T. K.; Nakatsubo, F. 1983: Chemical mechanisms of an important cleavage reaction in the fungal degradation of lignin. Biochem. Biophys. Acta 756: 376–384

    Google Scholar 

  • Kirk, T. K.; Farrell, R. L. 1987: Enzymatic “Combustion”: The Microbial Degradation of Lignin Ann. Rev. Microbiol. 41: 465–505

    Google Scholar 

  • Kuwahara, M.; Glenn, J. K.; Morgan, M. A.; Gold, M. H. 1984: Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169: 247–250

    Google Scholar 

  • Leisola, M. S. A.; Schmidt, B.; Thanei-Wyss, U.; Fiechter, A. 1985: Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett. 189: 267–270

    Google Scholar 

  • Miki, K.; Renganathan, V.; Gold, M. H. 1986: Novel aryl ether rearrangement catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 203: 235–238

    Google Scholar 

  • Miki, K.; Ranganathan, V.; Mayfield, M. B.; Gold, M. H. 1987: Aromatic ring cleavage of a β-biphenyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 210: 199–203

    Google Scholar 

  • Nakamura, M.; Yoshitake, A.; Katayama, Y.; Morohoshi, N.; Haraguchi, T. 1987: Cloning of enzyme genes of Coriolus versicolor II. Analysis of sugar residue of laccase II, and synthesis of cDNA. Abst. 32th Lignin Symposium, Fukuoka, Japan 83–86

  • Nakatsubo, F.; Kirk, T. K.; Shimada, M.; Higuchi, T. 1981: Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Arch. Microbiol. 128: 416–420

    Google Scholar 

  • Nakatsubo, F.; Reid, I. D.; Kirk, T. K. 1982: Incorporation of 18O2 and absence of sterospecificity in primary product formation during fungal metabolism of a lignin model compound. Biochim. Biophys. Acta 719: 284–291

    Google Scholar 

  • Niku-Paavola, M.-L.; Karhunen, E.; Salola, P.; Paunio, V. 1988: Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254: 877–884

    Google Scholar 

  • Odier, E. (ed) 1987: Lignin Enzymic and Microbial Degradation. Paris: INRA

    Google Scholar 

  • Odier, E.; Mozuch, M. D.; Kalyanaraman, B.; Kirk, T. K. 1987: Cellubiose: quinone oxidoreductase does not prevent oxidative coupling of phenols or polymerization of lignin by lignin peroxidase. In: Odier, E. (ed) Lignin Enzymic and Microbial Degradation 131–136 Paris: INRA

    Google Scholar 

  • Paszczynaki, A.; Huynh, V.-B.; Crawford, R. L. 1985: Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37–41

    Google Scholar 

  • Renganathan, V.; Gold, M. H. 1986: Spectral characterization of the oxidized states of lignin peroxidase, an extacellular heme enzyme from the white-rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25: 1626–1631

    Google Scholar 

  • Russel, J. D.; Henderson, M. E. K.; Farmer, V. C. 1961: Metabolism of lignin model compounds by Polystictus versicolor. Biochim. Biophys. Acta 52: 565–570

    Google Scholar 

  • Shimada, M.; Hattori, T.; Umezawa, T.; Higuchi, T.; Uzura, K. 1987: Regiospecific oxygenations during ring cleavage of a secondary metabolite, 3,4-dimethoxybenzyl alcohol catalyzed by lignin peroxidase. FEBS Lett. 221: 327–331

    Google Scholar 

  • Tai, D.; Terazawa, M.; Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1983a: Biodegradation of guaiacyl and guaiacyl-syringyl lignins in wood by Phanerochaete chrysosporium. In: Higuchi, T.; Chang, H-m.; Kirk T. K. (eds) Recent Advances in Lignin Biodegradation Research. 44–63 Tokyo: UNI Publisher

    Google Scholar 

  • Tai, D.; Terazawa, M.; Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1983b: Characterization of biodegraded lignins isolated from birch wood decayed by Phanerochaete chrysosporium by 13C NMR spectroscopy. Proc. Intern. Symp. Wood Pulping Chem. 4: 144–149

    Google Scholar 

  • Terazawa, M.; Tai, D.; Chen, C.-L.; Chang, H.-m.; Kirk, T. K. 1983: Identification of the constituents of low molecular weight fraction obtained from birch wood degraded by Phanerochaete chrysosporium. Proc. Intern. Symp. Wood Pulping Chem. 4: 150–155

    Google Scholar 

  • Tien, M.; Kirk, T. K. 1983: Lignin degrading enzyme from the himenomycete Phanerochaete chrysosporium Burds. Science 211: 661–663

    Google Scholar 

  • Tien, M.; Tu, C.-p. D. 1987: Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326: 520–523

    Google Scholar 

  • Trotter, P. C. 1986: Biotechnology and the economic productivity of commercial forests. Tappi Journal July: 22–28

  • Umezawa, T.; Nakatsubo, F.; Higuchi, T. 1982: Lignin degradation by Phanerochaete chrysosporium. Metabolism of a phenolic phenylcoumaran substructure model compound. Arch. Microbiol. 131: 124–128

    Google Scholar 

  • Umezawa, T.; Nakatsubo, F.; Higuchi, T. 1983: Degradation pathway of arylglycerol-β-aryl ethers by Phanerochaete chrysosporium. Agric. Biol. Chem. 47: 2677–2681

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1985a: Role of guaiacol in the degradation of arylglycerol-β-guaiacyl ether by Phanerochaete chrysosporium. FEMS Microbiol. Lett. 26: 123–126

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1985b: A novel Cα-Cβ cleavage of a β-O-4 lignin model dimer with rearrangement of the β-aryl group by Phanerochaete crysosporium. FEBS Lett. 192: 147–150

    Google Scholar 

  • Umzawa, T.; Higuchi, T. 1985c: Aromatic ring cleavage in degradation of β-O-4 lignin substructure by Phanerochaete chrysosporium. FEBS Lett. 182: 257–259

    Google Scholar 

  • Umezawa, T.; Kawai, S.; Yokota, S.; Higuchi, T. 1986a: Aromatic ring cleavage of various β-O-4 lignin model dimers by Phanerochaete chrysosporium. Wood Research (Kyoto) 73: 8–17

    Google Scholar 

  • Umezawa, T.; Shimada, M.; Higuchi, T.; Kusai, K. 1986b: Aromatic ring cleavage of β-O-4 lignin substructure model dimers by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 205: 287–292

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1986c: Aromatic ring cleavage of β-O-4 lignin model dimers without prior demeth(ox)ylation by lignin peroxidase. FEBS Lett. 205: 293–298

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1987a Formation of a muconate in aromatic ring cleavage of a β-O-4 lignin substructure model by lignin peroxidase. Agric. Biol. Chem. 51: 2281–2284

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1987b: Mechanism of aromatic ring cleavage of β-O-4 lignin substructure models by lignin peroxidase. FEBS Lett. 218: 255–260

    Google Scholar 

  • Umezawa, T.; Higuchi, T. 1989: Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett. 242: 325–329

    Google Scholar 

  • Wariishi, H.; Morohoshi, N.; Haraguchi, T. 1987.; Degradation of lignin by the extracellular enzymes of Coriolus versicolor VII. Effective degradation of syringyl type β-aryl ether lignin model compound by laccase III. Mokuzai Gakkaishi 33: 892–898

    Google Scholar 

  • Yokota, S.; Umezawa, T.; Kawai, S.; Higuchi, T. 1988a: Degradation of phenolic β-1 lignin model dimers by ligninolytic cultures of Phanerochaete chrysosporium and lignin peroxidase. Abst. 38th Annu. meeting of Wood Res. Soc. Asahikawa, Japan 396

  • Yokota, S.; Umezawa, T.; Higuchi, T. 1988b: Unpublished data

  • Yoshihara, K.; Umezawa, T.: Higuchi, T.; Nishiyama, M. 1988: Degradation of a nonphenolic β-O-4 lignin substructure model compound by Coriolus hirsutus. Agric. Biol. Chem. 52: 2345–2346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Academy Lecture presented at the Cellucon 88 in Japan, International Symposium on New Functionalisation Developments in Cellulosics and Wood, held in Kyoto, Japan, November 28 to December 1, 1988

This paper is a conclusion of our investigations on the biosynthesis and microbial degradation of lignin for 30 years in the Research Section of Lignin Chemistry, Wood Research Institute, Kyoto University. The author is greatly indebted to Drs. M. Shimada, F. Nakatsubo, T. Yamasaki, H. Ohashi, M. Tanahashi, Y. Nakamura, H. Kuroda, H. Kutsuki, T. Katayama, Y. Kamaya, T. Umezawa and Messrs. H. Fushiki, M. Ohta, A. Noguchi, H. Namba, T. Habe, S. Kawai, S. Yokota, and T. Hattori for their kind cooperation in these investigations. These invstigations were supported in part by Grant-in-Aid Nos. 548047, 57480058, 59760124, 60760130, 60440015, 61760142, 61560193, 62790250 for Scientific Research, and 1980 Grant-in-Aid for Environmental Science (R-33-8), No. 403064 from the Ministry of Education, Science and Culture of Japan, and a 1980 Weyerhaeuser grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, T. Lignin biochemistry: Biosynthesis and biodegradation. Wood Sci.Technol. 24, 23–63 (1990). https://doi.org/10.1007/BF00225306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225306

Keywords

Navigation