Skip to main content

Advertisement

Log in

Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A comprehensive landslide susceptibility mapping (LSM) should be produced to reduce damages to individuals and infrastructures. In the international landslide literature, various statistical methods such as logistic regression (LR) and frequency ratio (FR) have been widely used individually for LSM. However, these methods have some weaknesses. This study aims to propose an ensemble method of FR and LR to overcome their weak points. This ensemble method was applied on Fayfa area which is located in the southwest of Saudi Arabia (SA) in Jazan region. The study area covers an area of ~260 km2, and is located between latitudes 17°11′46″N to 17°21′16′′N and longitudes 43°0′30′′E to 43°11′38′′E. For LSM, an inventory map with 86 landslide occurrences was extracted from various sources. Then, the landslide inventory was randomly divided into two datasets: 70 % for training the models and 30 % for validation. The landslide conditioning factors used in the LSL include altitude, curvature, distance from wadis, distance from road, distance from fault, stream power index, topographic wetness index, soil type, geology, slope, and aspect. The produced susceptibility maps were validated by an area under the curve technique. The success rate curves of the models measure the goodness of fit of the training data, while the prediction rate curves provide the validation of the susceptibility maps, measuring the prediction capability. The validation results showed 65, 69, and 79 % success rates for FR, LR, and ensemble models, respectively. Furthermore, the prediction rates were 58, 77, and 82 % for FR, LR, and ensemble models, respectively. The proposed ensemble method can be replicated in other natural hazard studies because it can produce accurate assessment for disaster management and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34

    Article  Google Scholar 

  • Armas I (2014) Diagnosis of landslide risk for individual buildings: insights from Prahova Subcarpathians, Romania. Environ Earth Sci 71(11):4637–4646. doi:10.1007/s12665-013-2854-5

    Article  Google Scholar 

  • Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1):15–31

    Article  Google Scholar 

  • Bai SB, Wang J, Thiebes B, Cheng C, Chang ZY (2014) Susceptibility assessments of the Wenchuan earthquake-triggered landslides in Longnan using logistic regression. Environ Earth Sci 71(2):731–743. doi:10.1007/s12665-013-2475-z

    Article  Google Scholar 

  • Barredo J, Benavides A, Hervás J, van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs 2(1):9–23

    Article  Google Scholar 

  • Benediktsson J, Swain PH, Ersoy OK (1990) Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE T Geosci Remote 28(4):540–552

    Article  Google Scholar 

  • Beven K, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24(1):43–69

    Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962

    Article  Google Scholar 

  • Chau K, Wu C, Li Y (2005) Comparison of several flood forecasting models in Yangtze River. J Hydrol Eng 10(6):485–491

    Article  Google Scholar 

  • Chen WT, Li XJ, Wang YX, Liu SW (2013) Landslide susceptibility mapping using LiDAR and DMC data: a case study in the Three Gorges area, China. Environ Earth Sci 70(2):673–685. doi:10.1007/s12665-012-2151-8

    Article  Google Scholar 

  • Choi J, Oh HJ, Won JS, Lee S (2010) Validation of an artificial neural network model for landslide susceptibility mapping. Environ Earth Sci 60:473–483

    Article  Google Scholar 

  • Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113(1):236–250

    Article  Google Scholar 

  • Dahal RK (2014) Regional-scale landslide activity and landslide susceptibility zonation in the Nepal Himalaya. Environ Earth Sci 71(12):5145–5164. doi:10.1007/s12665-013-2917-7

    Article  Google Scholar 

  • Dahal RK, Bhandary NP, Hasegawa S, Yatabe R (2014) Topo-stress based probabilistic model for shallow landslide susceptibility zonation in the Nepal Himalaya. Environ Earth Sci 71(9):3879–3892. doi:10.1007/s12665-013-2774-4

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Article  Google Scholar 

  • Dai F, Lee C, Li J, Xu Z (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75(3):229–250

    Article  Google Scholar 

  • Fairer GM (1981) Reconnaissance geology of the Jabal Fayfa quadrangle, sheet 17/43C. Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-02-87, no text scale 1:100,000, Kingdom of Saudi Arabia

  • Fairer GM (1985) Explanatory notes to the geology of the Wadi Baysh quadrangle, sheet 17F. Saudi Arabian Deputy Ministry for Mineral Resources, Kingdom of Saudi Arabia

    Google Scholar 

  • Ghalkhani H, Golian S, Saghafian B, Farokhnia A, Shamseldin A (2013) Application of surrogate artificial intelligent models for real-time flood routing. Water Environ J 27(4):535–548

    Article  Google Scholar 

  • Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1):147–161

    Article  Google Scholar 

  • Gupta RP, Kanungo D, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs 10(3):330–341

    Article  Google Scholar 

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1):181–216

    Article  Google Scholar 

  • Igwe O, Mode W, Nnebedum O, Okonkwo I, Oha I (2014) The analysis of rainfall-induced slope failures at Iva Valley area of Enugu State, Nigeria. Environ Earth Sci 71(5):2465–2480. doi:10.1007/s12665-013-2647-x

    Article  Google Scholar 

  • Klimes J (2013) Landslide temporal analysis and susceptibility assessment as bases for landslide mitigation, Machu Picchu, Peru. Environ Earth Sci 70(2):913–925. doi:10.1007/s12665-012-2181-2

    Article  Google Scholar 

  • Lee S (2013) Landslide detection and susceptibility mapping in the Sagimakri area, Korea using KOMPSAT-1 and weight of evidence technique. Environ Earth Sci 70(7):3197–3215. doi:10.1007/s12665-013-2385-0

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25(11):2037–2052

  • Luzi L, Pergalani F, Terlien M (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58(3):313–336

    Article  Google Scholar 

  • Maerz NH, Youssef AM, Pradhan B, Bulkhi A (2014) Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi Arabia. Arab J Geosci. doi:10.1007/s12517-014-1423-x

    Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Moore ID, Grayson RB (1991) Terrain-based catchment partitioning and runoff prediction using vector elevation data. Water Resour Res 27(6):1177–1191

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3):401–418

    Article  Google Scholar 

  • Oh H-J, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Oh H-J, Lee S, Soedradjat GM (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60(6):1317–1328

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3):331–343

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64(1):180–197

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464. doi:10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Poudyal CP, Chang C, Oh H-J, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61(5):1049–1064

    Article  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

  •  Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320

    Article  Google Scholar 

  • Pradhan B (2011) Manifestation of an advanced fuzzy logic model coupled with geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat 18(3):471–493

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51(1):350–365

    Article  Google Scholar 

  • Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126

    Article  Google Scholar 

  • Pradhan B, Lee S (2010a) Regional landslide susceptibility analysis using back-propagation neural networks model at Cameron Highland, Malaysia. Landslides 7(1):13–30

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054

    Article  Google Scholar 

  •  Pradhan B, Singh R, Buchroithner M (2006) Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Adv Space Res 37(4):698–709

    Article  Google Scholar 

  • Pradhan B, Oh HJ, Buchroithner M (2010a) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat Nat Hazards Risk 1(3):199–223

  • Pradhan B, Youssef AM, Varathrajoo R (2010b) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo-Spat Inf Sci 13(2):93–102

  • Pradhan B, Mansor S, Pirasteh S, Buchroithner MF (2011) Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int J Remote Sens 32(14):4075–4087  

  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266. doi:10.1007/s12665-013-2390-3

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2(1):61–69

    Article  Google Scholar 

  • Sarkar S, Kanungo D (2004) An integrated approach for landslide susceptibility mapping using remotesensing and GIS. Photogr Eng Rem Sens 70(5):617–626

    Article  Google Scholar 

  • Schleier M, Bi RN, Rohn J, Ehret D, Xiang W (2014) Robust landslide susceptibility analysis by combination of frequency ratio, heuristic GIS-methods and ground truth evaluation for a mountainous study area with poor data availability in the Three Gorges Reservoir area, PR China. Environ Earth Sci 71(7):3007–3023. doi:10.1007/s12665-013-2677-4

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96(1):28–40

    Article  Google Scholar 

  • Tilmant A, Vanclooster M, Duckstein L, Persoons E (2002) Comparison of fuzzy and nonfuzzy optimal reservoir operating policies. J Water Res Plan 128(6):390–398

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 118(1):124–135

    Article  Google Scholar 

  • van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21(2–3):241–255

    Article  Google Scholar 

  • van Westen CV, Terlien M (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surf Proc Land 21(9):853–868

  • van Westen C, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • van Westen C, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? B Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131

    Article  Google Scholar 

  • Wan SA (2013) Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environ Earth Sci 68(5):1349–1366. doi:10.1007/s12665-012-1832-7

    Article  Google Scholar 

  • Wu XL, Niu RQ, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environ Earth Sci 70(3):1307–1318. doi:10.1007/s12665-013-2217-2

    Article  Google Scholar 

  • Wu XL, Ren F, Niu RQ (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ Earth Sci 71(11):4725–4738. doi:10.1007/s12665-013-2863-4

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu A, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152

    Article  Google Scholar 

  • Yin J, Chen J, Xu X, Wang X, Zheng Y (2010) The characteristics of the landslides triggered by the Wenchuan Ms 8.0 earthquake from Anxian to Beichuan. J Asian Earth Sci 37(5):452–459

  • Youssef AM, Pradhan B, Maerz NH (2013) Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway, Kingdom of Saudi Arabia using high-resolution satellite imagery. Arab J Geosci 1–11. doi:10.1007/s12517-013-0935-0

  • Zhou J-W, Cui P, Yang X-G (2013) Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J Asian Earth Sci 76(1):70–84

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to three anonymous reviewers for their valuable comments on the earlier version of the manuscript which helped us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.M., Pradhan, B., Jebur, M.N. et al. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci 73, 3745–3761 (2015). https://doi.org/10.1007/s12665-014-3661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3661-3

Keywords

Navigation