Skip to main content

Advertisement

Log in

Recent progress in upgrading metallurgical-grade silicon to solar-grade silicon via pyrometallurgical routes

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Si-based photovoltaic solar power has been rapidly developed as a renewable and green energy source. The widespread use of Si-based solar cells requires large amounts of solar-grade Si (SoG−Si) to manufacture Si wafers. Chemical routes, mainly the modified Siemens process, have dominated the preparation of polycrystalline SoG−Si; however, traditional chemical techniques employ a series of complex chemical reactions involving various corrosive and hazardous reagents. In addition, large amounts of complex waste solar cells and Si kerf slurry waste gradually accumulate and are difficult to recycle using these approaches. New methods are required to meet the demand for SoG−Si preparation and Si waste recycling. The metallurgical route shows promise but is hindered by the problem of eliminating B and P from metallurgical-grade Si (MG−Si). Various pyrometallurgical treatments have been proposed to enhance the removal of B and P from MG−Si. This article reviews Si refining with slag treatment, chlorination, vacuum evaporation, and solvent refining, and summarizes and discusses the basic principles and recent representative studies of the four methods. Among these, solvent refining is the most promising and environmentally friendly approach for obtaining low-cost SoG−Si and is a popular research topic. Finally, a simple and green approach, i.e., a combination of solvent refining, slag treatment, or vacuum directional solidification, is proposed for low-cost SoG−Si preparation using MG−Si or Si wastes as raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Philipps, F. Ise, and W. Warmuth, Photovoltaics Report, Fraunhofer Institiute for Solar Energy Systems [2021-07-27]. https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html

  2. J. Hofstetter, J.F. Leliñvre, C.D. Cañizo, and A. Luque, Acceptable contamination levels in solar grade silicon: From feedstock to solar cell, Mater. Sci. Eng. B, 159–160(2009), p. 299.

    Article  CAS  Google Scholar 

  3. B. G. Gribov and K. V. Zinov’ev, Preparation of high-purity silicon for solar cells, Inorg. Mater., 39(2003), No. 7, p. 653.

    Article  CAS  Google Scholar 

  4. J.R. Davis, A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, and H.C. Mollenkopf, Impurities in silicon solar cells, IEEE Trans. Electron Devices, 27(1980), No. 4, p. 677.

    Article  Google Scholar 

  5. L. Hu, Z. Wang, X.Z. Gong, Z.C. Guo, and H. Zhang, Impurities removal from metallurgical-grade silicon by combined Sn−Si and Al−Si refining processes, Metall. Mater. Trans. B, 44(2013), No. 4, p. 828.

    Article  CAS  Google Scholar 

  6. H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo, Leaching behavior of impurities in Ca-alloyed metallurgical grade silicon, Hydrometallurgy, 156(2015), p. 173.

    Article  CAS  Google Scholar 

  7. Y.V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld, and H. Kuntzel, Microstructure of metallurgical grade silicon during alloying refining with calcium, Intermetallics, 25(2012), p. 9.

    Article  CAS  Google Scholar 

  8. S.K. Sahu and E. Asselin, Effect of oxidizing agents on the hydrometallurgical purification of metallurgical grade silicon, Hydrometallurgy, 121–124(2012), p. 120.

    Article  CAS  Google Scholar 

  9. Y. Lei, W.H. Ma, X.D. Ma, J.J. Wu, K.X. Wei, S.Y. Li, and K. Morita, Leaching behaviors of impurities in metallurgical-grade silicon with hafnium addition, Hydrometallurgy, 169(2017), p. 433.

    Article  CAS  Google Scholar 

  10. F.S. Xi, S.Y. Li, W.H. Ma, Z.J. Chen, K.X. Wei, and J.J. Wu, A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon, Hydrometallurgy, 201(2021), art. No. 105553.

  11. H. Chen, K. Morita, X.D. Ma, Z.Y. Chen, and Y. Wang, Boron removal for solar-grade silicon production by metallurgical route: A review, Sol. Energy Mater. Sol. Cells, 203(2019), art. No. 110169.

  12. J. Kline, M. Tangstad, and G. Tranell, A Raman spectroscopic study of the structural modifications associated with the addition of calcium oxide and boron oxide to silica, Metall. Mater. Trans. B, 46(2015), No. 1, p. 62.

    Article  CAS  Google Scholar 

  13. Y. Wang and K. Morita, Measurement of CaO−SiO2−SaCl2 slag density by an improved Archimedean method, J. Min. Metall. Sect. B, 51(2015), No. 2, p. 113.

    Article  CAS  Google Scholar 

  14. E. Krystad, L.K. Jakobsson, K. Tang, and G. Tranell, Thermodynamic behavior and mass transfer kinetics of boron between ferrosilicon and CaO−SiO2 slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2574.

    Article  CAS  Google Scholar 

  15. H.M. Liaw and F.S. d’Aragona, Purification of metallurgical-grade silicon by slagging and impurity redistribution, Sol. Cells, 10(1983), No. 2, p. 109.

    Article  CAS  Google Scholar 

  16. L.A.V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita, Behavior and state of boron in CaO−SiO2 slags during refining of solar grade silicon, ISIJ Int., 49(2009), No. 6, p. 777.

    Article  CAS  Google Scholar 

  17. K.X. Wei, H.F. Lu, W.H. Ma, Y.L. Li, Z. Ding, J.J. Wu, and Y.N. Dai, Boron removal from metallurgical-grade silicon by CaO−SiO2 slag refining, Rare Met., 34(2015), No. 7, p. 522.

    Article  CAS  Google Scholar 

  18. J.J. Wu, Y.L. Li, W.H. Ma, K.X. Wei, B. Yang, and Y.N. Dai, Boron removal in purifying metallurgical grade silicon by CaO−SiO2 slag refining, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1231.

    Article  CAS  Google Scholar 

  19. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, X.B. Yang, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo, Multiple slag operation on boron removal from metallurgical-grade silicon using Na2O−SiO2 slags, Ind. Eng. Chem. Res., 53(2014), No. 30, p. 12054.

    Article  CAS  Google Scholar 

  20. H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo, Reaction mechanism and kinetics of boron removal from metallurgical-grade silicon based on Li2O−SiO2 slags, JOM, 68(2016), No. 9, p. 2371.

    Article  CAS  Google Scholar 

  21. R. Noguchi, K. Suzuki, F. Tsukihashi, and N. Sano, Thermodynamics of boron in a silicon melt, Metall. Mater. Trans. B, 25(1994), No. 6, p. 903.

    Article  Google Scholar 

  22. D.W. Luo, N. Liu, Y.P. Lu, G.L. Zhang, and T.J. Li, Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 1178.

    Article  CAS  Google Scholar 

  23. E.J. Jung, B.M. Moon, S.H. Seok, and D.J. Min, The mechanism of boron removal in the CaO−SiO2−Al2O3 slag system for SoG−Si, Energy, 66(2014), p. 35.

    Article  CAS  Google Scholar 

  24. J. Safarian, G. Tranell, and M. Tangstad, Boron removal from silicon by CaO−Na2O−SiO2 ternary slag, Metall. Mater. Trans. E, 2(2015), No. 2, p. 109.

    CAS  Google Scholar 

  25. L. Zhang, Y. Tan, F.M. Xu, J.Y. Li, H.Y. Wang, and Z. Gu, Removal of boron from molten silicon using Na2O−CaO−SiO2 slags, Sep. Sci. Technol., 48(2013), No. 7, p. 1140.

    Article  CAS  Google Scholar 

  26. J.J. Wu, F.M. Wang, W.H. Ma, Y. Lei, and B. Yang, Thermodynamics and kinetics of boron removal from metallurgical grade silicon by addition of high basic potassium carbonate to calcium silicate slag, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1796.

    Article  CAS  Google Scholar 

  27. Y. Hou, Y.D. Wu, G.H. Zhang, and K.C. Chou, Removal of boron from metallurgical grade silicon by CaO−SiO2 based slags, Metall. Res. Technol., 116(2019), No. 4, art. No. 413.

  28. M.Y. Zhu, G.X. Wu, A. Azarov, E. Monakhov, K. Tang, M. Müller, and J. Safarian, Effects of La2O3 addition into CaO−SiO2 slag: Structural evolution and impurity separation from Si−Sn alloy, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3045.

    Article  CAS  Google Scholar 

  29. F.M. Wang, J.J. Wu, W.H. Ma, M. Xu, Y. Lei, and B. Yang, Removal of impurities from metallurgical grade silicon by addition of ZnO to calcium silicate slag, Sep. Purif. Technol., 170(2016), p. 248.

    Article  CAS  Google Scholar 

  30. J.J. Wu, W.H. Ma, B.J. Jia, B. Yang, D.C. Liu, and Y.N. Dai, Boron removal from metallurgical grade silicon using a CaO−Li2O−SiO2 molten slag refining technique, J. Non Cryst. Solids, 358(2012), No. 23, p. 3079.

    Article  CAS  Google Scholar 

  31. Z. Ding, W.H. Ma, K.X. Wei, J.J. Wu, Y. Zhou, and K.Q. Xie, Boron removal from metallurgical-grade silicon using lithium containing slag, J. Non Cryst. Solids, 358(2012), No. 18–19, p. 2708.

    Article  CAS  Google Scholar 

  32. Y. Wang, X.D. Ma, and K. Morita, Evaporation removal of boron from metallurgical-grade silicon using CaO−CaCl2−SiO2 slag, Metall. Mater. Trans. B, 45(2014), p. 334.

    Article  CAS  Google Scholar 

  33. L.K. Jakobsson and M. Tangstad, Erratum to: Distribution of boron between silicon and CaO−MgO−Al2O3−SiO2 stags, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2516.

    Article  CAS  Google Scholar 

  34. C.H. Yin, B.F. Hu, and X.M. Huang, Boron removal from molten silicon using sodium-based slags, J. Semicond., 32(2011), No. 9, art. No. 092003.

  35. J.Y. Li, L. Zhang, Y. Tan, D.C. Jiang, D.K. Wang, and Y.Q. Li, Research of boron removal from polysilicon using CaO−Al2O3−SiO2−CaF2 slags, Vacuum, 103(2014), p. 33.

    Article  CAS  Google Scholar 

  36. M.D. Johnston and M. Barati, Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications, Sol. Energy Mater. Sol. Cells, 94(2010), No. 12, p. 2085.

    Article  CAS  Google Scholar 

  37. H. Nishimoto, Y. Kang, T. Yoshikawa, and K. Morita, The rate of boron removal from molten silicon by CaO−SiO2 slag and Cl2 treatment, High Temp. Mater. Process., 31(2012), No. 4–5, p. 471.

    Article  CAS  Google Scholar 

  38. Z.F. Xia, J.J. Wu, W.H. Ma, Y. Lei, K.X. Wei, and Y.N. Dai, Separation of boron from metallurgical grade silicon by a synthetic CaO−CaCl2 slag treatment and Ar−H2O−O2 gas blowing refining technique, Sep. Purif. Technol., 187(2017), p. 25.

    Article  CAS  Google Scholar 

  39. J.Y. Li, P.P. Cao, P. Ni, Y.Q. Li, and Y. Tan, Enhanced boron removal from metallurgical grade silicon by the slag refining method with the addition of tin, Sep. Sci. Technol., 51(2016), No. 9, p. 1598.

    CAS  Google Scholar 

  40. X.D. Ma, T. Yoshikawa, and K. Morita, Purification of metallurgical grade Si combining Si-Sn solvent refining with slag treatment, Sep. Purif. Technol., 125(2014), p. 264.

    Article  CAS  Google Scholar 

  41. X.D. Ma, T. Yoshikawa, and K. Morita, Removal of boron from silicon-tin solvent by slag treatment, Metall. Mater. Trans. B, 44(2013), No. 3, p. 528.

    Article  CAS  Google Scholar 

  42. M. Xu, Y.Y. Zhu, J.J. Wu, Z.F. Xia, K.X. Wei, and W.H. Ma, Mechanism of boron removal using calcium silicate slag containing CaCl2 under O2 atmosphere, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2573.

    Article  CAS  Google Scholar 

  43. H. Chen, X.Z. Yuan, K. Morita, Y.J. Zhong, X.D. Ma, Z.Y. Chen, and Y. Wang, Reaction mechanism and kinetics of boron removal from molten silicon via CaO−SiO2−CaCl2 slag treatment and ammonia injection, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2088.

    Article  CAS  Google Scholar 

  44. Q.L. Wang, J.J. Wu, S.F. Qian, H.Z. Gu, Z.F. Xia, K.X. Wei, and W.H. Ma, Effects of slag treatment conditions on boron removal from metallurgical silicon by united gas-slag refining technology, Silicon, 2021. DOI: https://doi.org/10.1007/s12633-021-01175-4

  45. R. Al-Khazraji, Y.Q. Li, and L.F. Zhang, Comparison between slag refining processes for B removal with metallurgical grade silicon and Si−Sn alloy, Metall. Res. Technol., 115(2018), No. 3, art. No. 312.

  46. M. Li, T. Utigard, and M. Barati, Removal of boron and phosphorus from silicon using CaO−SiO2−Na2O−Al2O3 flux, Metall. Mater. Trans. B, 45(2014), No. 1, p. 221.

    Article  CAS  Google Scholar 

  47. G.Y. Qian, Y.W. Sun, Z. Wang, K.X. Wei, and W.H. Ma, Novel application of electroslag remelting refining in the removal of boron and phosphorus from silicon alloy for silicon recovery, ACS Sustain. Chem. Eng., 9(2021), No. 7, p. 2962.

    Article  CAS  Google Scholar 

  48. J. Safarian, G. Tranell, and M. Tangstad, Thermodynamic and kinetic behavior of B and Na through the contact of B-doped silicon with Na2O−SiO2 slags, Metall. Mater. Trans. B, 44(2013), No. 3, p. 571.

    Article  CAS  Google Scholar 

  49. M. Tanahashi, T. Fujisawa, and C. Yamauchi, Oxidative removal of boron from molten silicon by CaO-based flux treatment with oxygen gas injection, Metall. Mater. Trans. B, 45(2014), No. 2, p. 629.

    Article  CAS  Google Scholar 

  50. R. Al-khazraji, Y.Q. Li, and L.F. Zhang, Boron separation from Si−Sn alloy by slag treatment, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1439.

    Article  CAS  Google Scholar 

  51. E.F. Nordstrand and M. Tangstad, Removal of boron from silicon by moist hydrogen gas, Metall. Mater. Trans. B, 43(2012), No. 4, p. 814.

    Article  CAS  Google Scholar 

  52. Ø.S. Sortland and M. Tangstad, Boron removal from silicon melts by H2O/H2 gas blowing: Mass transfer in gas and melt, Metall. Mater. Trans. E, 1(2014), p. 211.

    CAS  Google Scholar 

  53. J.J. Wu, Y.L. Li, W.H. Ma, K. Liu, K.X. Wei, K.Q. Xie, B. Yang, and Y.N. Dai, Impurities removal from metallurgical grade silicon using gas blowing refining techniques, Silicon, 6(2014), No. 1, p. 79.

    Article  CAS  Google Scholar 

  54. Z.Y. Chen and K. Morita, Iron-catalyzed boron removal from molten silicon in ammonia, Metall. Mater. Trans. E, 3(2016), p. 228.

    CAS  Google Scholar 

  55. Z.Y. Chen and K. Morita, Removal of boron from molten Si and Si−Cu using ammonia containing gas, Silicon, 10(2018), No. 5, p. 1809.

    Article  CAS  Google Scholar 

  56. H. Chen, Y. Wang, W.J. Zheng, Q.C. Li, X.Z. Yuan, and K. Morita, Model implementation of boron removal using CaCl2−CaO−SiO2 slag system for solar-grade silicon, Metall. Mater. Trans. B, 48(2017), No. 6, p. 3219.

    Article  CAS  Google Scholar 

  57. C.H. Lu, L.Q. Huang, H.X. Lai, M. Fang, W.H. Ma, P.F. Xing, L. Zhang, J.T. Li, and X.T. Luo, Effects of slag refining on boron removal from metallurgical-grade silicon using recycled slag with active component, Sep. Sci. Technol., 50(2015), No. 17, p. 2759.

    CAS  Google Scholar 

  58. C.H. Lu, T.Y. Tang, Z.L. Sheng, P.F. Xing, and X.T. Luo, Improved removal of boron from metallurgical-grade Si by CaO−SiO2−CaCl2 slag refining with intermittent CaCl2 addition, Vacuum, 143(2017), p. 7.

    Article  CAS  Google Scholar 

  59. Y. Wang and K. Morita, Measurement of the phase diagram of the SiO2−CaCl2 system and liquid area study of the SiO2−CaO−CaCl2 system, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1542.

    Article  CAS  Google Scholar 

  60. L.Q. Huang, H.X. Lai, C.H. Gan, H.P. Xiong, P.F. Xing, and X.T. Luo, Separation of boron and phosphorus from Cu-alloyed metallurgical grade silicon by CaO−SiO2−CaCl2 slag treatment, Sep. Purif. Technol., 170(2016), p. 408.

    Article  CAS  Google Scholar 

  61. Z.Y. Chen, Y.L. You, and K. Morita, Sustainable simultaneous synthesis of titanium-bearing materials from silicon waste and TiO2-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10742.

    Article  CAS  Google Scholar 

  62. Y. Wang and K. Morita, Reaction mechanism and kinetics of boron removal from molten silicon by CaO−SiO2−CaCl2 slag treatment, J. Sustain. Metall., 1(2015), No. 2, p. 126.

    Article  Google Scholar 

  63. R. Al-Khazraji, Boron removal from metallurgical grade silicon and Si-Sn alloy through slag refining with gas blowing, Funct. Mater., 25(2018), No. 3, p. 625.

    Article  CAS  Google Scholar 

  64. J.J. Wu, Y.Q. Zhou, W.H. Ma, M. Xu, and B. Yang, Synergistic separation behavior of boron in metallurgical grade silicon using a combined slagging and gas blowing refining technique, Metall. Mater. Trans. B, 48(2017), No. 1, p. 22.

    Article  CAS  Google Scholar 

  65. Y.Q. Li, W. Chen, J. Lu, X.H. Lei, and L.F. Zhang, Boron removal from metallurgical-grade silicon by slag refining and gas blowing techniques: Experiments and simulations, J. Electron. Mater., 50(2021), No. 3, p. 1386.

    Article  CAS  Google Scholar 

  66. J. Safarian and M. Tangstad, Vacuum refining of molten silicon, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1427.

    Article  CAS  Google Scholar 

  67. D.C. Jiang, S.Q. Ren, S. Shi, W. Dong, J.S. Qiu, Y. Tan, and J.Y. Li, Phosphorus removal from silicon by vacuum refining and directional solidification, J. Electron. Mater., 43(2014), No. 2, p. 314.

    Article  CAS  Google Scholar 

  68. S.S. Zheng, T.A. Engh, M. Tangstad, and X.T. Luo, Numerical simulation of phosphorus removal from silicon by induction vacuum refining, Metall. Mater. Trans. A, 42(2011), No. 8, p. 2214.

    Article  CAS  Google Scholar 

  69. A. Hoseinpur, S. Andersson, K. Tang, and J. Safarian, Selective vacuum evaporation by the control of the chemistry of gas phase in vacuum refining of Si, Langmuir, 37(2021), No. 24, p. 7473.

    Article  CAS  Google Scholar 

  70. A. Hoseinpur and J. Safarian, Vacuum refining of silicon at ultra-high temperatures, Vacuum, 184(2021), art. No. 109924.

  71. K.X. Wei, D.M. Zheng, W.H. Ma, B. Yang, and Y.N. Dai, Study on Al removal from MG−Si by vacuum refining, Silicon, 7(2015), No. 3, p. 269.

    Article  CAS  Google Scholar 

  72. Y. Tan, S.Q. Ren, S. Shi, S.T. Wen, D.C. Jiang, W. Dong, M. Ji, and S.H. Sun, Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification, Vacuum, 99(2014), p. 272.

    Article  CAS  Google Scholar 

  73. S.Q. Ren, P.T. Li, D.C. Jiang, S. Shi, J.Y. Li, S.T. Wen, and Y. Tan, Removal of Cu, Mn and Na in multicrystalline silicon by directional solidification under low vacuum condition, Vacuum, 115(2015), p. 108.

    Article  CAS  Google Scholar 

  74. J.L. Murray and A.J. McAlister, The Al−Si (aluminum-silicon) system, Bull. Alloy Phase Diagr., 5(1984), No. 1, p. 74.

    Article  CAS  Google Scholar 

  75. R.H. Hopkins and A. Rohatgi, Impurity effects in silicon for high efficiency solar cells, J. Cryst. Growth, 75(1986), No. 1, p. 67.

    Article  CAS  Google Scholar 

  76. Y. Lei, W.H. Ma, L.E. Sun, J.J. Wu, Y.N. Dai, and K. Morita, Removal of B from Si by Hf addition during Al−Si solvent refining process, Sci. Technol. Adv. Mater., 17(2016), No. 1, p. 12.

    Article  CAS  Google Scholar 

  77. K. Tang, E.J. Øvrelid, G. Tranell, and M. Tangstad, Thermochemical and kinetic databases for the solar cell silicon materials, [in] Crystal Growth of Si for Solar Cells, Springer, Berlin, Heidelberg, 2009, p. 219.

    Chapter  Google Scholar 

  78. Takeshi Yoshikawa, Physic-Chemistry on Silicon Refining at Low-Temperature Using Si−Al Solvent [Dissertation], The University of Tokyo, Tokyo, 2005.

    Google Scholar 

  79. T. Yoshikawa and K. Morita, Continuous solidification of Si from Si−Al melt under the induction heating, ISIJ Int., 47(2007), No. 4, p. 582.

    Article  CAS  Google Scholar 

  80. Q.C. Zou, H. Tian, Z.X. Zhang, C.Z. Sun, J.C. Jie, N. Han, and X.Z. An, Controlling segregation behavior of primary Si in hypereutectic Al−Si alloy by electromagnetic stirring, Metals, 10(2020), No. 9, art. No. 1129.

  81. G.Q. Lv, Y. Bao, Y.F. Zhang, Y.F. He, W.H. Ma, and Y. Lei, Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al−Si alloy with high Si content, Mater. Sci. Semicond. Process., 81(2018), p. 139.

    Article  CAS  Google Scholar 

  82. W.Y. Jiang, W.Z. Yu, J. Li, Z.X. You, C.M. Li, and X.W. Lv, Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al−Si alloys, Mater., 12(2018), No. 1, art. No. 10.

  83. J.W. Li, Z.C. Guo, J.C. Li, and L.Z. Yu, Super gravity separation of purified Si from solvent refining with the Al−Si alloy system for solar grade silicon, Silicon, 7(2015), No. 3, p. 239.

    Article  CAS  Google Scholar 

  84. Y. Nishi, Y. Kang, and K. Morita, Control of Si crystal growth during solidification of Si−Al melt, Mater. Trans., 51(2010), No. 7, p. 1227.

    Article  CAS  Google Scholar 

  85. J.W. Li, J.C. Li, Y.H. Lin, J. Shi, B.Y. Ban, G.C. Liu, W. Yang, and J. Chen, Separation and recovery of refined Si from Al−Si melt by modified czochralski method, Materials, 13(2020), No. 4, art. No. 996.

  86. T. Yoshikawa, K. Arimura, and K. Morita, Boron removal by titanium addition in solidification refining of silicon with Si−Al melt, Metall. Mater. Trans. B, 36(2005), No. 6, p. 837.

    Article  Google Scholar 

  87. X.L. Bai, B.Y. Ban, J.W. Li, Z.Q. Fu, Z.J. Peng, C.B. Wang, and J. Chen, Effect of Ti addition on B removal during silicon refining in Al−30%Si alloy directional solidification, Sep. Purif. Technol., 174(2017), p. 345.

    Article  CAS  Google Scholar 

  88. B.Y. Ban, J.W. Li, X.L. Bai, Q.X. He, J. Chen, and S.Y. Dai, Mechanism of B removal by solvent refining of silicon in Al−Si melt with Ti addition, J. Alloys Compd., 672(2016), p. 489.

    Article  CAS  Google Scholar 

  89. Y. Lei, W.H. Ma, L.E. Sun, J.J. Wu, and K. Morita, Effects of small amounts of transition metals on boron removal during electromagnetic solidification purification of silicon with Al−Si solvent, Sep. Purif. Technol., 162(2016), p. 20.

    Article  CAS  Google Scholar 

  90. Y. Lei, P. Qiu, K. Chen, X.H. Chen, W.H. Ma, J.J. Wu, K.X. Wei, S.Y. Li, G.Q. Lv, and J.J. Qiu, Mechanism of ZrB2 formation in Al−Si alloy and application in Si purification, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 12990.

    Article  CAS  Google Scholar 

  91. T. Yoshikawa and K. Morita, Removal of B from Si by solidification refining with Si−Al melts, Metall. Mater. Trans. B, 36(2005), p. 731.

    Article  Google Scholar 

  92. Y. Lei, W.H. Ma, J.J. Wu, K.X. Wei, S.Y. Li, and K. Morita, Impurity phases and their removal in Si purification with Al−Si alloy using transition metals as additives, J. Alloys Compd., 734(2018), p. 250.

    Article  CAS  Google Scholar 

  93. K. Chen, X.H. Chen, Y. Lei, W.H. Ma, J.X. Han, and Z.H. Yang, Mechanism of enhancing B removal from Si with V addition using Al−Si as the refining solvent, Sep. Purif. Technol., 203(2018), p. 168.

    Article  CAS  Google Scholar 

  94. W.Z. Yu, Y. Xue, J. Mei, X.Z. Zhou, M.L. Xiong, and S.F. Zhang, Segregation and removal of transition metal impurities during the directional solidification refining of silicon with Al−Si solvent, J. Alloys Compd., 805(2019), p. 198.

    Article  CAS  Google Scholar 

  95. C. Chen, B.Y. Ban, J.F. Sun, J.W. Li, X.S. Jiang, J. Shi, J. Chen, J.B. Jia, H. Sakiani, and S.H. Tabaian, Mechanism of boron removal of primary Si phases and morphology evolution of impurity phases during slow cooling solidification refining of Al−30wt.%Si alloy with Zr additions, J. Alloys Compd., 860(2021), art. No. 158517.

  96. C. Chen, J.W. Li, X.S. Jiang, W.F. Song, J. Shi, B.Y. Ban, and J. Chen, Effect of impurity phase migration on Al−30wt.%Si solvent refining with Zr additions during directional solidification, Sep. Purif. Technol., 278(2021), art. No. 119572.

  97. Y.L. Li, L.D. Liu, and J. Chen, Effect of mechanical stirring on silicon purification during Al−Si solvent refining, J. Cryst. Growth, 553(2021), art. No. 125943.

  98. Q.C. Zou, N. Han, Z.F. Shen, J.C. Jie, and T.J. Li, Effects of AlB2/AlP phase and electromagnetic stirring on impurity B/P removal in the solidification process of Al−30Si alloy, Sep. Purif. Technol., 207(2018), p. 151.

    Article  CAS  Google Scholar 

  99. Y.F. He, X. Yang, Y. Bao, S.Y. Li, Z.J. Chen, W.H. Ma, and G.Q. Lv, Effects of silicon content on the separation and purification of primary silicon from hypereutectic aluminum-silicon alloy by alternating electromagnetic directional solidification, Sep. Purif. Technol., 219(2019), p. 25.

    Article  CAS  Google Scholar 

  100. T. Xiao, G.Q. Lv, Y. Bao, W.C. Duo, L. Xu, and W.H. Ma, Electromagnetic separation of coarse Al−Si melts: The migration behavior of iron-rich phase and continuous growth of primary silicon, J. Alloys Compd., 819(2020), art. No. 153006.

  101. G.Y. Qian, L.Y. Sun, H. Chen, Z. Wang, K.X. Wei, and W.H. Ma, Enhancing impurities removal from Si by controlling crystal growth in directional solidification refining with Al−Si alloy, J. Alloys Compd., 820(2020), art. No. 153300.

  102. B.Y. Ban, T.T. Zhang, J.W. Li, X.L. Bai, X. Pan, J. Chen, and S. Hadi Tabaian, Solidification refining of MG−Si by Al−Si alloy under rotating electromagnetic field with varying frequencies, Sep. Purif. Technol., 202(2018), p. 266.

    Article  CAS  Google Scholar 

  103. R.W. Olesinski and G.J. Abbaschian, The Si−Sn (silicon-tin) system, Bull. Alloy Phase Diagr., 5(1984), No. 3, p. 273.

    Article  CAS  Google Scholar 

  104. L.X. Zhao, Z. Wang, Z.C. Guo, and C.Y. Li, Low-temperature purification process of metallurgical silicon, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 1185.

    Article  CAS  Google Scholar 

  105. X.D. Ma, T. Yoshikawa, and K. Morita, Phase relations and thermodynamic property of boron in the silicon-tin melt at 1673 K, J. Alloys Compd., 529(2012), p. 12.

    Article  CAS  Google Scholar 

  106. T. Yoshikawa and K. Morita, Thermodynamic property of B in molten Si and phase relations in the Si−Al−B system, Mater. Trans., 46(2005), No. 6, p. 1335.

    Article  CAS  Google Scholar 

  107. A. Hosseinpour and L. Tafaghodi Khajavi, Slag refining of silicon and silicon alloys: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 5, p. 308.

    Article  CAS  Google Scholar 

  108. S. Thomas, M. Barati, and K. Morita, A review of slag refining of silicon alloys, JOM, 73(2021), No. 1, p. 282.

    Article  CAS  Google Scholar 

  109. Y. Lei, W.H. Ma, J.J. Wu, K.X. Wei, G.Q. Lv, S.Y. Li, and K. Morita, Purification of metallurgical-grade silicon using Si−Sn alloy in presence of Hf, Zr, or Ti, Mater. Sci. Semicond. Process., 88(2018), p. 97.

    Article  CAS  Google Scholar 

  110. Y.S. Ren, H.P. Wang, and K. Morita, Effect of Zr addition on B-removal behaviour during solidification purification of Si with Si−Sn solvent, Vacuum, 167(2019), p. 319.

    Article  CAS  Google Scholar 

  111. L. Hu, Z. Wang, X.Z. Gong, Z.C. Guo, and H. Zhang, Purification of metallurgical-grade silicon by Sn−Si refining system with calcium addition, Sep. Purif. Technol., 118(2013), p. 699.

    Article  CAS  Google Scholar 

  112. X.D. Ma, T. Yoshikawa, and K. Morita, Si growth by directional solidification of Si−Sn alloys to produce solar-grade Si, J. Cryst. Growth, 377(2013), p. 192.

    Article  CAS  Google Scholar 

  113. X.D. Ma, T. Yoshikawa and K. Morita, Elemental properties of Si: Si−Sn solid solution and diffusion coefficient in the Si−Sn melt, Sci. Adv. Mater., 6(2014), No. 8, p. 1697.

    Article  CAS  Google Scholar 

  114. L.F. Zhang, Y.S. Ma, and Y.Q. Li, Preparing crystalline silicon from Si−Sn solvent by zone melting directional solidification method, Mater. Sci. Semicond. Process., 71(2017), p. 12.

    Article  CAS  Google Scholar 

  115. Y.S. Ren, H.P. Wang, and K. Morita, Growth control and enrichment of Si crystals from Si−Sn melt by directional solidification, Vacuum, 158(2018), p. 86.

    Article  CAS  Google Scholar 

  116. X.D. Ma, Y. Lei, T. Yoshikawa, B.J. Zhao, and K. Morita, Effect of solidification conditions on the silicon growth and refining using Si−Sn melt, J. Cryst. Growth, 430(2015), p. 98.

    Article  CAS  Google Scholar 

  117. F. Huang, L. Zhao, L. Liu, Z.L. Hu, R.R. Chen, and Z.L. Dong, Separation and purification of Si from Sn−30Si alloy by electromagnetic semi-continuous directional solidification, Mater. Sci. Semicond. Process., 99(2019), p. 54.

    Article  CAS  Google Scholar 

  118. T.Y. Li, L. Guo, Z. Wang, and Z.C. Guo, Purification of metallurgical-grade silicon combining Sn−Si solvent refining with gas pressure filtration, RSC Adv., 10(2020), No. 19, p. 11435.

    Article  CAS  Google Scholar 

  119. L.T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati, Removal of boron from silicon by solvent refining using ferrosilicon alloys, Metall. Mater. Trans. B, 46(2015), No. 2, p. 615.

    Article  CAS  Google Scholar 

  120. L.T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati, Thermodynamics of boron distribution in solvent refining of silicon using ferrosilicon alloys, J. Alloys Compd., 619(2015), p. 634.

    Article  CAS  Google Scholar 

  121. L.T. Khajavi and M. Barati, Thermodynamics of phosphorus removal from silicon in solvent refining of silicon, High Temp. Mater. Process., 31(2012), No. 4–5, p. 627.

    Article  CAS  Google Scholar 

  122. L.T. Khajavi and M. Barati, Thermodynamics of phosphorus in solvent refining of silicon using ferrosilicon alloys, Metall. Mater. Trans. B, 48(2017), No. 1, p. 268.

    Article  CAS  Google Scholar 

  123. W. Yan, Y.D. Yang, W.Q. Chen, M. Barati, and A. McLean, Thermodynamic assessment of Si−P and Si−Fe−P alloys for solar grade silicon refining via vacuum levitation, Vacuum, 135(2017), p. 101.

    Article  CAS  Google Scholar 

  124. H. Sakiani, S.H. Tabaian, J. Chen, J.W. Li, and B.Y. Ban, Investigating boron and phosphorus removal from silicon by Si−Ti and Si−Ti−Fe alloying systems, Sep. Purif. Technol., 250(2020), art. No. 117227.

  125. X.C. Deng, S. Li, J.H. Wen, K.X. Wei, M.Y. Zhang, X. Yang, and W.H. Ma, Mechanism of enhancing phosphorus removal from metallurgical grade silicon by Si−Fe−Ti phase reconstruction, Metall. Mater. Trans. B, 52(2021), No. 2, p. 625.

    Article  CAS  Google Scholar 

  126. A. Hosseinpour and L. Tafaghodi Khajavi, Thermodynamics of boron removal in slag refining of Fe−Si alloy, J. Alloys Compd., 768(2018), p. 545.

    Article  CAS  Google Scholar 

  127. A. Hosseinpour and L. Tafaghodi Khajavi, Phosphorus removal from Si−Fe alloy using SiO2−Al2O3−CaO slag, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1773.

    Article  CAS  Google Scholar 

  128. G.I.A. Taposhe and L.T. Khajavi, Removal of phosphorus from Si−Fe alloy by CaO−Al2O3−SiO2−Na2O slag refining, JOM, 73(2021), No. 2, p. 729.

    Article  CAS  Google Scholar 

  129. S. Esfahani and M. Barati, Purification of metallurgical silicon using iron as impurity getter part I: Growth and separation of Si, Met. Mater. Int., 17(2011), No. 5, p. 823.

    Article  CAS  Google Scholar 

  130. S. Esfahani and M. Barati, Purification of metallurgical silicon using iron as impurity getter, part II: Extent of silicon purification, Met. Mater. Int., 17(2011), No. 6, p. 1009.

    Article  CAS  Google Scholar 

  131. Y.Q. Li, C.C. Liu, X.H. Lei, L.F. Zhang, and T.H. Tsai, Bulk Si production from Si−Fe melts under temperature gradients, part I: Growth and characterization, J. Mater. Res. Technol., 9(2020), No. 6, p. 12595.

    Article  CAS  Google Scholar 

  132. Y.Q. Li, X.H. Lei, C.C. Liu, and L.F. Zhang, Bulk Si production from Si−Fe melts by directional-solidification, part II: Element distribution, Mater. Sci. Semicond. Process., 128(2021), art. No. 105754.

  133. R.W. Olesinski and G.J. Abbaschian, The Cu−Si (copper-silicon) system, Bull. Alloy Phase Diagr., 7(1986), No. 2, p. 170.

    Article  CAS  Google Scholar 

  134. A.M. Mitrašinović and T.A. Utigard, Refining silicon for solar cell application by copper alloying, Silicon, 1(2009), No. 4, p. 239.

    Article  CAS  Google Scholar 

  135. L.Q. Huang, H.X. Lai, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo, Enhancement in extraction of boron and phosphorus from metallurgical grade silicon by copper alloying and aqua regia leaching, Hydrometallurgy, 161(2016), p. 14.

    Article  CAS  Google Scholar 

  136. L.Q. Huang, J. Chen, A. Danaei, S. Thomas, L.Y. Huang, X.T. Luo, and M. Barati, Effect of Ti addition to Cu−Si alloy on the boron distribution in various phases, J. Alloys Compd., 734(2018), p. 235.

    Article  CAS  Google Scholar 

  137. L.Q. Huang, A. Danaei, S. Thomas, P.F. Xing, J.T. Li, X.T. Luo, and M. Barati, Solvent extraction of phosphorus from Si−Cu refining system with calcium addition, Sep. Purif. Technol., 204(2018), p. 205.

    Article  CAS  Google Scholar 

  138. M. Fang, C.H. Lu, H.X. Lai, L.Q. Huang, J. Chen, W.H. Ma, Z.L. Sheng, J.N. Shen, J.T. Li, and X.T. Luo, Effect of solidification rate on representative impurities distribution in Si−Cu alloy, Mater. Sci. Technol., 29(2013), No. 7, p. 861.

    Article  CAS  Google Scholar 

  139. Y.S. Ren, S. Ueda, and K. Morita, Formation mechanism of ZrB2 in a Si−Cu melt and its potential application for refining Si and recycling Si waste, ACS Sustainable Chem. Eng., 7(2019), No. 24, p. 20107.

    Article  CAS  Google Scholar 

  140. Y.S. Ren and K. Morita, Low-temperature process for the fabrication of low-boron content bulk Si from Si−Cu solution with Zr addition, ACS Sustainable Chem. Eng., 8(2020), No. 17, p. 6853.

    Article  CAS  Google Scholar 

  141. H. Morito, M. Uchikoshi, and H. Yamane, Boron removal by dissolution and recrystallization of silicon in a sodium-silicon solution, Sep. Purif. Technol., 118(2013), p. 723.

    Article  CAS  Google Scholar 

  142. H. Morito, T. Karahashi, M. Uchikoshi, M. Isshiki, and H. Yamane, Low-temperature purification of silicon by dissolution and solution growth in sodium solvent, Silicon, 4(2012), No. 2, p. 121.

    Article  CAS  Google Scholar 

  143. J.W. Li, B.Y. Ban, Y.L. Li, X.L. Bai, T.T. Zhang, and J. Chen, Removal of impurities from metallurgical grade silicon during Ga−Si solvent refining, Silicon, 9(2017), No. 1, p. 77.

    Article  CAS  Google Scholar 

  144. C.T. Zhang, H.X. Lai, Y.H. Zhang, Z.L. Sheng, J.T. Li, P.F. Xing, and X.T. Luo, Extraction of phosphorus from metallurgical grade silicon using a combined process of Si−Al−Ca solvent refining and CaO−CaF2 slag treatment, Sep. Purif. Technol., 232(2020), art. No. 115954.

  145. Y.Q. Li, Y. Tan, J.Y. Li, and K. Morita, Si purity control and separation from Si−Al alloy melt with Zn addition, J. Alloys Compd., 611(2014), p. 267.

    Article  CAS  Google Scholar 

  146. J.Y. Li, Y. Liu, Y. Tan, Y.Q. Li, L. Zhang, S.R. Wu, and P.J. Jia, Effect of tin addition on primary silicon recovery in Si−Al melt during solidification refining of silicon, J. Cryst. Growth, 371(2013), p. 1.

    Article  CAS  Google Scholar 

  147. Y.Q. Li, Y. Tan, J.Y. Li, Q. Xu, and Y. Liu, Effect of Sn content on microstructure and boron distribution in Si−Al alloy, J. Alloys Compd., 583(2014), p. 85.

    Article  CAS  Google Scholar 

  148. M.D. Johnston and M. Barati, Calcium and titanium as impurity getter metals in purification of silicon, Sep. Purif. Technol., 107(2013), p. 129.

    Article  CAS  Google Scholar 

  149. Y. Lei, W.H. Ma, G.Q. Lv, K.X. Wei, S.Y. Li, and K. Morita, Purification of metallurgical-grade silicon using zirconium as an impurity getter, Sep. Purif. Technol., 173(2017), p. 364.

    Article  CAS  Google Scholar 

  150. C.T. Zhang, W. Sheng, L.Q. Huang, S. Zhang, Y.H. Zhang, H.X. Cai, J.S. Meng, and X.T. Luo, Vanadium as an impurity trapper for purification of metallurgical-grade silicon, Sep. Purif. Technol., 260(2021), art. No. 118199.

  151. Y.S. Ren, H. Chen, T. Mizutani, W.H. Ma, Y. Zeng, and K. Morita, Efficient separation of bulk Si and enhanced B removal by Si−Sn-Cu ternary solvent refining with Zr addition, Sep. Purif. Technol., 275(2021), art. No. 119242.

  152. H. Chen, Y.S. Ren, W.H. Ma, and Y. Zeng, Distribution behaviour of boron between ZrTiHfCuNi high entropy alloy and silicon, Sep. Purif. Technol., 271(2021), art. No. 118863.

  153. J. Mei, W.Z. Yu, P. Hou, Y. Xue, Y.T. Xin, and K. Yan, Purification of metallurgical grade silicon via the Mg−Si alloy refining and acid leaching process, Silicon, 13(2021), No. 2, p. 341.

    Article  CAS  Google Scholar 

  154. M.Y. Zhu, D. Wan, K. Tang, and J. Safarian, Impurity removal from Si by Si−Ca−Mg ternary alloying-leaching system, Mater. Des., 198(2021), art. No. 109348.

  155. M.Y. Zhu, S.Y. Yue, K. Tang, and J. Safarian, New insights into silicon purification by alloying-leaching refining: A comparative study of Mg−Si, Ca−Si, and Ca−Mg−Si systems, ACS Sustainable Chem. Eng., 8(2020), No. 42, p. 15953.

    Article  CAS  Google Scholar 

  156. C. Wang, Y. Lei, W.H. Ma, and P. Qiu, An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag, J. Hazard. Mater., 401(2021), art. No. 123446.

  157. Y.H. Zhang, W. Sheng, L.Q. Huang, S. Zhang, G.Y. Chen, C.T. Zhang, H.X. Cai, J.S. Meng, and X.T. Luo, Preparation of low-boron silicon from diamond wire sawing waste by pressure-less sintering and CaO−SiO2 slag treatment, ACS Sustainable Chem. Eng., 8(2020), No. 31, p. 11755.

    Article  CAS  Google Scholar 

  158. S.C. Yang, X.H. Wan, K.X. Wei, W.H. Ma, and Z. Wang, Investigation of Na2CO3−CaO−NaCl (or Na3AlF6) additives for the remanufacturing of silicon from diamond wire saw silicon powder waste, J. Clean. Prod., 286(2021), art. No. 125525.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Morita.

Additional information

Conflict of Interest

The authors declare no known competing financial interests or personal relationships that could influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Ma, X., Wang, Y. et al. Recent progress in upgrading metallurgical-grade silicon to solar-grade silicon via pyrometallurgical routes. Int J Miner Metall Mater 29, 767–782 (2022). https://doi.org/10.1007/s12613-022-2418-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2418-3

Keywords

Navigation