Skip to main content
Log in

Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients (L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient (β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10−6 m s−1 at 1823 K (1550 °C) and was 2.43 × 10−5 m s−1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. D. Sarti, and R. Einhaus: Sol. Energy Mater. Sol. Cells, 2002, vol. 72, pp. 27−40.

    Article  Google Scholar 

  2. 2. P. Woditsch, and W. Koch: Sol. Energy Mater. Sol. Cells, 2002, vol. 72, pp. 11−26.

    Article  Google Scholar 

  3. 3. J.J. Wu, W.H. Ma, Y.L. Li, B. Yang, D.C. Liu, and Y.N. Dai: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 260−265

    Article  Google Scholar 

  4. 4. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 972−979.

    Article  Google Scholar 

  5. 5. L. Hu, Z. Wang, X.Z. Gong, Z.C. Guo, and Hu Zhang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 828−836.

    Article  Google Scholar 

  6. 6. S.H Choi, B.Y. Jang, J.S. Lee, Y.S. Ahn, W.Y. Yoon, and J.H. Joo: Renew. Energ., 2013, vol. 54, pp. 40−45.

    Article  Google Scholar 

  7. 7. M.A. Martorano, J.B.F. Neto, T.S. Oliveira, T.O. Tsubaki: Mater. Sci. Eng., B, 2011, vol. 176, pp. 217−226.

    Article  Google Scholar 

  8. 8. T.C. Santos, W.F.P. Neves-Junior, J.A.C. Goncalves, C.M.K. Haddadb, and C.C. Bueno: Radiat. Meas., 2011, vol. 46, pp. 1662−1665.

    Article  Google Scholar 

  9. 9. J. Safarian, G. Tranell, and M. Tangstad: Energy Procedia, 2012, vol. 20, pp. 88–97.

    Article  Google Scholar 

  10. 10. K. Morita, and T. Miki: Intermetallics, 2003, vol. 11, pp.1111–1117.

    Article  Google Scholar 

  11. 11. J.J. Wu, W.H. Ma, B. Yang, Y.N. Dai, and K. Morita: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 463−467.

    Article  Google Scholar 

  12. 12. J.J. Wu, Y.L. Li, W.H. Ma, K. Liu, K.X. Wei, K.Q. Xie, B. Yang, and Y.N. Dai: Silicon, 2014, vol. 6, pp. 79−85.

    Article  Google Scholar 

  13. 13. L.A.V. Teixeira, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 783−787.

    Article  Google Scholar 

  14. JJ Wu, WH Ma, BJ Jia, B Yang, DC Liu, YN Dai: J. Non-Cryst. Solids, 2012, vol. 358, pp. 3079−3083

    Article  Google Scholar 

  15. 15. L.A.V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 777–782.

    Article  Google Scholar 

  16. 16. J. Safarian, G. Tranell, and M. Tangstad: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 571−583.

    Article  Google Scholar 

  17. 17. K. Suzuki, T. Sugiyama, K. Takano, and N. Sano: J. Jpn. Inst. Met., 1990, vol. 54, pp. 168–172.

    Google Scholar 

  18. 18. J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1402–1406.

    Article  Google Scholar 

  19. J. White, C. Allertz, K. Forwald, and D. Sichen: Ninth International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), Beijing, 2012.

  20. 20. D.W. Luo, N. Liu, Y.P. Lu, G.L. Zhang, and T.J. Li: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1178–1184.

    Article  Google Scholar 

  21. 21. M.D. Johnston and M. Barati: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 2085–2090.

    Article  Google Scholar 

  22. M. Tanahashi, M. Sano, C. Yamauchi, and K. Takeda: 2006 TMS Fall Extraction and Processing Division: Sohn International Symposium, San Diego. 2006. vol. 1. pp. 173–86.

  23. 23. H. Nishimoto, Y. Kang, T. Yoshikawa, and K. Morita: High Temp. Mater. Processes, 2012, vol. 31, pp. 471–477.

    Article  Google Scholar 

  24. 24. E. Krystad, K. Tang, and G. Tranell: JOM, 2012, vol. 64, pp. 968−972.

    Article  Google Scholar 

  25. 25. I. Barin: Thermochemical Data of Pure Substances, VCH Publishers, New York, 1993

    Google Scholar 

  26. 26. R. Noguchi, K. Suzuki, F. Tsukihashi, and N. Sano: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 903−907.

    Article  Google Scholar 

  27. 27. J.J. Wu, Y.L. Li, W.H. Ma, K.X. Wei, B. Yang, and Y.N. Dai: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1231−1236.

    Article  Google Scholar 

  28. 28. M.D. Johnston, and M. Barati: J. Non-Cryst. Solids, 2011, vol. 357, pp. 970−975.

    Article  Google Scholar 

  29. 29. L. Zhang, Y. Tan, J.Y. Li, Y. Liu, and D.K. Wang: Mater. Sci. Semicond. Process., 2013, vol. 16, pp. 1645–1649.

    Article  Google Scholar 

  30. 30. J.J. Wu, M. Xu, K. Liu, W.H. Ma, B. Yang, and Y.N. Dai: J. Min. Metall. B, 2014, vol. 50, pp. 83−86.

    Article  Google Scholar 

  31. 31. Y.X. Zou, J.C. Chou, and P. Chao: Scientia Sinica, 1963, vol. 12, pp. 1249−1250.

    Google Scholar 

  32. 32. E. Krystad, S. Zhang, and G. Tranell: 2012 EPD Congress, USA, 2012, pp. 471−480.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (No. 51574133 and 51504118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Wu.

Additional information

Manuscript submitted October 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, F., Ma, W. et al. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag. Metall Mater Trans B 47, 1796–1803 (2016). https://doi.org/10.1007/s11663-016-0615-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0615-z

Keywords

Navigation