Skip to main content
Log in

Boron Removal from Metallurgical-Grade Silicon by Slag Refining and Gas Blowing Techniques: Experiments and Simulations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To enhance the removal of B from metallurgical-grade Si (MG-Si) by the CaO-SiO2-CaCl2 slag refining technique, Ar gas was injected during the refining process. The effects of the refining time, Ar gas flow rate, and the blowing-pipe immersion depth on the removal of B from MG-Si were studied. The results show that the injection of Ar gas can effectively stir and then mix the Si and slag phases, resulting in an increase in the Si/slag contact area and in an acceleration of the mass transfer rate of B. With the combined slag-refining and Ar gas-blowing approach, the reaction time for the removal of B was reduced to 5 min from 75 min required with the slag-refining approach. Correspondingly, the content of B was reduced from 23.91 to 10.42 ppmw, with a removal efficiency of 56.42%. The results were confirmed by the coupled large-eddy simulation model and the volume of fluid multiphase flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Davis Jr, A. Rohatgi, R. Hopkins, P. Blais, P. Rai-Choudhury, J. McCormick, and H. Mollenkopf, IEEE Trans. Electron Devices 27, 677–687 (1980).

    Article  Google Scholar 

  2. S. Shi, X. Guo, G. An, D. Jiang, S. Qin, J. Meng, P. Li, Y. Tan, H.M. Noorul, and Huda Khan Asghar, Separat. Purification Technol. 215, 242–248 (2019).

    Article  CAS  Google Scholar 

  3. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo, Separ. Sci. Technol. 49, 2261–2270 (2014).

    CAS  Google Scholar 

  4. E.J. Jung, B.M. Moon, S.H. Seok, and D.J. Min, Energy 66, 35–40 (2014).

    Article  CAS  Google Scholar 

  5. A. Hosseinpour and L.T. Khajavi, Metall. Mater. Trans. B 50, 1773–1781 (2019).

    Article  CAS  Google Scholar 

  6. Q. Zhou, J.J. Wu, W.H. Ma, Z.J. Chen, Y. Lei, and K.X. Wei, JOM 72, 2670–2675 (2020).

    Article  CAS  Google Scholar 

  7. A.-K. Rowaid, Y. Li, and L. Zhang, Int. J. Miner. Metall. Mater. 25, 1439–1446 (2018).

    Article  Google Scholar 

  8. A.-K. Rowaid, Y. Li, and L. Zhang, Metall. Res. Technol. 115, 312 (2018).

    Article  Google Scholar 

  9. L.K. Jakobsson and M. Tangstad, Metall. Mater. Trans. B 45, 1644–1655 (2014).

    Article  CAS  Google Scholar 

  10. L. Zhang, Y. Tan, F.M. Xu, J. Li, H. Wang, and Z. Gu, Separt. Sci. Technol. 48, 1140–1144 (2013).

    Article  CAS  Google Scholar 

  11. M. Fang, C. Lu, L. Huang, H. Lai, J. Chen, X. Yang, J. Li, W. Ma, P. Xing, and X. Luo, Ind. Eng. Chem. Res. 53, 12054–12062 (2014).

    Article  CAS  Google Scholar 

  12. J. Wu, W. Ma, B. Jia, B. Yang, D. Liu, and Y. Dai, J. Non. Cryst. Solids 358, 3079–3083 (2012).

    Article  CAS  Google Scholar 

  13. Q. Zhou, J. Wen, J. Wu, W. Ma, M. Xu, K. Wei, Z. Zhang, L. Zhang, and J. Xu, J. Clean. Prod. 229, 1335–1341 (2019).

    Article  CAS  Google Scholar 

  14. D.W. Luo, N. Liu, Y.P. Lu, G.L. Zhang, and T.J. Li, Trans. Nonferrous Met. Soc. China 21, 1178–1184 (2011).

    Article  CAS  Google Scholar 

  15. J.F. White and S. Du, Metall. Mater. Trans. B 45, 96–105 (2014).

    Article  CAS  Google Scholar 

  16. J. Safarian, K. Tang, J.E. Olsen, S. Andersson, G. Tranell, and K. Hildal, Metall. Mater. Trans. B 47, 1063–1079 (2016).

    Article  CAS  Google Scholar 

  17. Ø.S. Sortland and M. Tangstad, Metall. Mater. Trans. E 1, 211–225 (2014).

    CAS  Google Scholar 

  18. J. Wu, Y. Zhou, W. Ma, M. Xu, and B. Yang, Metall. Mater. Trans. B 48, 22–26 (2017).

    Article  CAS  Google Scholar 

  19. J. Smagorinsky, Mon. Weather Rev. 91, 99–164 (1963).

    Article  Google Scholar 

  20. Q.G. BoQu, Q. Li, J. Lian, and B. Yin, J. Chang’an Univ. 33, 32–36 (2013).

    Google Scholar 

  21. Y. Wang, X.D. Ma, and K. Morita, Metall. Mater. Trans. B 45, 334–337 (2014).

    Article  Google Scholar 

  22. H. Chen, X. Yuan, K. Morita, Y. Zhong, X. Ma, Z. Chen, and Y. Wang, Metall. Mater. Trans. B 50, 2088–2094 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (No. 51604023), the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-029A1), the USTB-NTUT Joint Research Program, the High Steel Center (HSC) at Yanshan University, the Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), the Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality Steel Consortium (HQSC) at the University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, W., Lu, J. et al. Boron Removal from Metallurgical-Grade Silicon by Slag Refining and Gas Blowing Techniques: Experiments and Simulations. J. Electron. Mater. 50, 1386–1396 (2021). https://doi.org/10.1007/s11664-020-08651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08651-4

Keywords

Navigation