Skip to main content
Log in

Impurities Removal from Metallurgical-Grade Silicon by Combined Sn-Si and Al-Si Refining Processes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The purification of metallurgical-grade silicon (MG-Si) by combined solvent refining processes has been studied. The final high-purity silicon was recovered through Sn-Si refining and Al-Si refining processes in sequence after acid leaching, and the removal mechanism of impurities was explored. Inductively coupled plasma (ICP) chemical analysis revealed the concentrations of main impurities including B and P, and typical metallic impurities except for solvents Sn and Al were reduced to below 1 ppmw. The final removal efficiencies of B and P were 97.7 pct and 99.8 pct, respectively, and those of most metallic impurities were above 99.9 pct. SEM analysis showed that P-containing phases (Al-Ca-Mg-Si-P and Al-Si-P) formed on the surface of refined Si after Sn-Si refining and Al-Si refining, which was confirmed to be the main approach for P removal. It was also found that the formation of binary silicide such as Fe3Si7 and Mn11Si19 or multicomponent phases such as Ca-Mg-Si phase occurred during the solvent refining process, and they segregated on the grain boundaries in Si or attached to the surface of Si, which led to high removal efficiency of metallic impurities by the solvent refining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Woditsch and W. Koch: Sol. Energ. Mater. Sol. Cell, 2002, vol. 72, pp. 11-26.

    Article  CAS  Google Scholar 

  2. T. Liu, Z.Y. Dong, Y.W. Zhao, J. Wang, T. Chen, H. Xie, J. Li, H.J. Ni, and D.X. Huo: J. Cryst. Growth, 2012, vol. 355, pp. 145-50.

    Article  CAS  Google Scholar 

  3. F.L. He, S.S. Zheng, and C. Chen: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1011-18.

  4. J.T. Wang, X.D. Li, Y.M. He, N. Feng, X.Y. An, F. Teng, C.T. Gao, C.H. Zhao, Z.X. Zhang, and E.Q. Xie: Separ. Purif. Tech., 2013, vol. 102, pp. 82-85.

    Article  CAS  Google Scholar 

  5. S. Shi, W. Dong, X. Peng, D.C. Jiang, and Y. Tan: Appl. Surf. Sci., 2013, vol. 266, pp. 344-49.

    Article  CAS  Google Scholar 

  6. J.J. Wu, W.H. Ma, B.J. Jia, B. Yang, D.C. Liu, and Y.N. Dai: J. Non-Cryst. Solid, 2012, vol. 358, pp. 3079-83.

    Article  CAS  Google Scholar 

  7. K. Tang, S. Andersson, E. Nordstrand, and M. Tangstad: JOM, 2012, vol. 64, pp. 952-56.

    Article  CAS  Google Scholar 

  8. T. Yoshikawa and K. Morita: JOM, 2012, vol. 64, pp. 946-51.

    Article  CAS  Google Scholar 

  9. J. Dietl: Proceedings of the Symposium on Matericals and New Processing Technologies for Photovoltaics, 1983, vol. 11, p. 52.

  10. T. Yoshikawa and K. Morita: J. Cryst. Growth, 2009, vol. 311, pp. 776-79.

    Article  CAS  Google Scholar 

  11. J.W. Li, Z.C. Guo, H.Q. Tang, Z. Wang, and S.T. Sun: Trans. Nonferr. Met. Soc. China, 2012, vol. 22, pp. 958-63.

    Article  CAS  Google Scholar 

  12. L.X. Zhao, Z. Wang, Z.C. Guo, and C.Y. Li: Trans. Nonferr. Met. Soc. China, 2011, vol. 21, pp. 1185-92.

    Article  CAS  Google Scholar 

  13. S. Esfahani and M. Barati: Met. Mater. Int., 2011, vol. 17, pp. 825-29.

    Google Scholar 

  14. S. Esfahani and M. Barati: Met. Mater. Int., 2011, vol. 17, pp. 1009-15.

    Article  CAS  Google Scholar 

  15. A.M. Mitrašinović and T.A. Utigard: Silicon, 2009, vol. 1, pp. 239-48.

    Article  Google Scholar 

  16. Z. Yin, A. Oliazadeh, and S. Esfahani: Can. Metall. Q., 2011, vol. 5, no. 7, pp. 166-72.

    Article  Google Scholar 

  17. C.W. Bale, E. Bélislea, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295-311.

    Article  CAS  Google Scholar 

  18. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.

    Article  CAS  Google Scholar 

  19. T. Yoshikawa and K. Morita: Sci. Tech. Adv. Mater., 2003, vol. 4, pp. 531-37.

    Article  CAS  Google Scholar 

  20. T. Yoshikawa and K. Morita: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 731-36.

    Article  CAS  Google Scholar 

  21. B.R. Bathey and M.C. Cretella: J. Mater. Sci., 1982, vol. 71, pp. 3077-96.

    Article  Google Scholar 

  22. F.A. Trumbore: Bell Syst. Tech. J., 1960, vol. 39, pp. 205-33.

    Google Scholar 

  23. T. Yoshikawa, K. Morita, S. Kawanish, and T. Tanaka: J. Alloy. Compd., 2010, vol. 490, pp. 31-41.

    Article  CAS  Google Scholar 

  24. D. Min and N. Sano: Metall. Trans. B, 1988, vol. 19B, pp. 433-39.

    Article  CAS  Google Scholar 

  25. K. Morita: Model, Control, and Optimization in Ferrous and Nonferrous Industry, TMS, Warrendale, PA, 2003, pp. 49-60.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (51174187) and National Key Technologies R&D Program (2011BAE03B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Wang, Z., Gong, X. et al. Impurities Removal from Metallurgical-Grade Silicon by Combined Sn-Si and Al-Si Refining Processes. Metall Mater Trans B 44, 828–836 (2013). https://doi.org/10.1007/s11663-013-9850-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9850-8

Keywords

Navigation