Skip to main content

Advertisement

Log in

Mid-infrared (MIR) Spectroscopy for Quality Analysis of Liquid Foods

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Liquid foods play important roles in the development of human culture due to their own peculiarities. Mid-infrared (MIR) spectroscopy combines several advantages such as non-invasive operation and high-efficiency detection and is thus proposed to be a prospective alternative to conventional techniques for food quality assessment. However, no reviews on MIR spectroscopic analysis of liquid food products are reported. This review summarizes the recent research progress of MIR chemical sensing methods for determinations of the authenticity and related quality attributes of liquid foods (such as milk, edible oils, alcoholic beverages, honeys, and vegetable and fruit juices). The characteristics and applications of MIR spectroscopic technique in tandem with chemometrics, along with the major challenges and future prospects, are discussed. MIR spectroscopy has great potential to fulfill the need of food industry for quality and authenticity analysis of liquid foods. Nevertheless, further measurements and analyses based on the existing results of food inspection are still required. It is believed that this review will be an effective signpost for scholars in related research fields to study the comprehensive quality of liquid food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greenstein JP, Otey MC, Birnbaum SM, Winitz M (1960) Quantitative nutritional studies with water-soluble, chemically defined diets. X. Formulation of a nutritionally complete liquid diet. J Natl Cancer Inst 24(1):211–219

    CAS  PubMed  Google Scholar 

  2. Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remón A, Lamuela-Raventós RM, Estruch R (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4(7):759–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Norton T, Sun D-W (2008) Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1(1):2–34

    Article  Google Scholar 

  4. Zulueta A, Barba FJ, Esteve MJ, Frígola A (2013) Changes in quality and nutritional parameters during refrigerated storage of an orange juice–milk beverage treated by equivalent thermal and non-thermal processes for mild pasteurization. Food Bioprocess Technol 6(8):2018–2030

    Article  CAS  Google Scholar 

  5. Barba FJ, Cortés C, Esteve MJ, Frígola A (2012) Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioprocess Technol 5(6):2222–2232

    Article  CAS  Google Scholar 

  6. Qu J-H, Sun D-W, Cheng J-H, Pu H (2017) Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT-Food Sci Technol 75:529–536

    Article  CAS  Google Scholar 

  7. Ma J, Sun D-W, Qu J-H, Pu H (2017a) Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT-FOOD Sci Technol 82:377–385

    Article  CAS  Google Scholar 

  8. Ma J, Qu J-H, Sun D-W (2017b) Developing hyperspectral prediction model for investigating dehydrating and rehydrating mass changes of vacuum freeze dried grass carp fillets. Food Bioprod Process 104:66–76

    Article  Google Scholar 

  9. Liu Y, Pu H, Sun D-W (2017) Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci Technol 69:25–35

    Article  CAS  Google Scholar 

  10. Pu Y-Y, Sun D-W (2015) Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chem 188:271–278

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Z, Wu X, Geng Y, Sun D-W, Chen H, Zhao Y, Zhou W, Li X, Pan H (2018) Effects of modified atmosphere vacuum cooling (MAVC) on the quality of three different leafy cabbages. LWT-FOOD Sci Technol 94:190–197

    Article  CAS  Google Scholar 

  12. Zhou S, Zhu Z, Sun D-W, Xu Z, Zhang Z, Wang Q-J (2017) Effects of different cooling methods on the carbon footprint of cooked rice. J Food Eng 215:44–50

    Article  Google Scholar 

  13. Feng C-H, Drummond L, Zhang Z-H, Sun D-W (2014) Evaluation of innovative immersion vacuum cooling with different pressure reduction rates and agitation for cooked sausages stuffed in natural or artificial casing. LWT-FOOD Sci Technol 59:77–85

    Article  CAS  Google Scholar 

  14. Kiani H, Sun D-W, Zhang Z (2012) The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. Ultrason Sonochem 19:1238–1245

    Article  CAS  PubMed  Google Scholar 

  15. Xie A, Sun D-W, Xu Z, Zhu Z (2015) Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208–215

    Article  CAS  PubMed  Google Scholar 

  16. Xie A, Sun D-W, Zhu Z, Pu H (2016) Nondestructive Measurements of Freezing Parameters of Frozen Porcine Meat by NIR Hyperspectral Imaging. Food Bioprocess Technol 9:1444–1454

    Article  CAS  Google Scholar 

  17. Cheng W, Sun D-W, Pu H, Wei Q (2018a) Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm. Food Chem 239:1001–1008

    Article  CAS  PubMed  Google Scholar 

  18. Cheng W, Sun D-W, Pu H, Wei Q (2018b) Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chem 248:119–127

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Zhu Z, Sun D-W (2018) Effects of freezing on cell structure of fresh cellular food materials: A review. Trends Food Sci Technol 75:46–55

    Article  CAS  Google Scholar 

  20. Luo W, Sun D-W, Zhu Z, Wang Q-J (2018) Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends Food Sci Technol 72:25–33

    Article  CAS  Google Scholar 

  21. Barba FJ, Brianceau S, Turk M, Boussetta N, Vorobiev E (2015) Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol 8(5):1139–1148

    Article  CAS  Google Scholar 

  22. De Vito F, Ferrari G, Lebovka NI, Shynkaryk NV, Vorobiev E (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1(4):307–313

    Article  Google Scholar 

  23. Zhao W, Tang Y, Lu L, Chen X, Li C (2014) Pulsed electric fields processing of protein-based foods. Food Bioprocess Technol 7(1):114–125

    Article  CAS  Google Scholar 

  24. Walkling-Ribeiro M, Noci F, Riener J, Cronin DA, Lyng JG, Morgan DJ (2009) The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioprocess Technol 2(4):422

    Article  Google Scholar 

  25. Wang J, Guan YG, Yu SJ, Zeng XA, Liu YY, Yuan S, Xu R (2011) Study on the Maillard reaction enhanced by pulsed electric field in a glycin–glucose model system. Food Bioprocess Technol 4(3):469–474

    Article  CAS  Google Scholar 

  26. Esteve MJ, Frígola A (2007) Refrigerated fruit juices: quality and safety issues. Adv Food Nutr Res 52:103–139

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Li QX (2011) Chemical composition, characterization, and differentiation of honey botanical and geographical origins, Advances in food and nutrition research. Vol. 62. Academic Press, pp 89–137

  28. Merás ID, Manzano JD, Rodríguez DA, de la Peña AM (2018) Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta 178:751–762

    Article  CAS  Google Scholar 

  29. Van Asselt E, van der Fels-Klerx H, Marvin H, Van Bokhorst-van de Veen H, Groot MN (2017) Overview of food safety hazards in the European dairy supply chain. Compr Rev Food Sci Food Saf 16(1):59–75

    Article  CAS  PubMed  Google Scholar 

  30. Du CJ, Sun D-W (2005) Pizza sauce spread classification using colour vision and support vector machines. J Food Eng 66:137–145

    Article  Google Scholar 

  31. Jackman P, Sun D-W, Allen P (2011) Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci Technol 22:185–197

    Article  CAS  Google Scholar 

  32. Sun D-W, Brosnan T (2003) Pizza quality evaluation using computer vision - Part 2 - Pizza topping analysis. J Food Eng 57:91–95

    Article  Google Scholar 

  33. Wang HH, Sun D-W (2003) Assessment of cheese browning affected by baking conditions using computer vision. J Food Eng 56:339–345

    Article  Google Scholar 

  34. Zheng C, Sun D-W, Zheng L (2006) Correlating colour to moisture content of large cooked beef joints by computer vision. J Food Eng 77:858–863

    Article  Google Scholar 

  35. Morsy N, Sun D-W (2013) Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Sci 93:292–302

    Article  CAS  PubMed  Google Scholar 

  36. He H-J, Sun D-W (2015) Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence spectroscopy. Trends Food Sci Technol 46:199–210

    Article  CAS  Google Scholar 

  37. Wang L, Sun D-W, Pu H, Cheng J-H (2017a) Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Crit Rev Food Sci Nutr 57:1524–1538

    Article  CAS  PubMed  Google Scholar 

  38. Wang K, Sun D-W, Pu H, Wei Q (2017b) Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci Technol 67:207–219

    Article  CAS  Google Scholar 

  39. Xu J-L, Riccioli C, Sun D-W (2015) An Overview on Nondestructive Spectroscopic Techniques for Lipid and Lipid Oxidation Analysis in Fish and Fish Products. Compr Rev Food Sci Food Saf 14:466–477

    Article  CAS  Google Scholar 

  40. Liu Y, Sun D-W, Cheng J-H, Han Z (2018) Hyperspectral Imaging Sensing of Changes in Moisture Content and Color of Beef During Microwave Heating Process. Food Anal Methods 11:2472–2484

    Article  Google Scholar 

  41. Ma J, Pu H, Sun D-W (2018) Predicting intramuscular fat content variations in boiled pork muscles by hyperspectral imaging using a novel spectral pre-processing technique. LWT-FOOD Sci Technol 94:119–128

    Article  CAS  Google Scholar 

  42. Ma J, Sun D-W, Pu H (2017) Model improvement for predicting moisture content (MC) in pork longissimus dorsi muscles under diverse processing conditions. by hyperspectral imaging. J Food Eng 196:65–72

    Article  Google Scholar 

  43. Pan Y, Sun D-W, Cheng J-H, Han Z (2018) Non-destructive Detection and Screening of Non-uniformity in Microwave Sterilization Using Hyperspectral Imaging Analysis. Food Anal Methods 11:1568–1580

    Article  Google Scholar 

  44. Cheng W, Sun D-W, Pu H, Wei Q (2017) Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods. Food Chem 221:1989–1996

    Article  CAS  PubMed  Google Scholar 

  45. Cheng W, Sun D-W, Cheng J-H (2016a) Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data. LWT-Food Sci Technol 73:13–19

    Article  CAS  Google Scholar 

  46. Cheng W, Sun D-W, Pu H, Liu Y (2016b) Integration of spectral and textural data for enhancing hyperspectral prediction of K value in pork meat. LWT-FOOD Sci Technol 72:322–329

    Article  CAS  Google Scholar 

  47. Dai Q, Cheng J-H, Sun D-W, Zhu Z, Pu H (2016) Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chem 197:257–265

    Article  CAS  PubMed  Google Scholar 

  48. Klaypradit W, Kerdpiboon S, Singh RK (2011) Application of artificial neural networks to predict the oxidation of menhaden fish oil obtained from Fourier transform infrared spectroscopy method. Food Bioprocess Technol 4(3):475–480

    Article  CAS  Google Scholar 

  49. Boubellouta T, Dufour É (2012) Cheese-matrix characteristics during heating and cheese melting temperature prediction by synchronous fluorescence and mid-infrared spectroscopies. Food Bioprocess Technol 5(1):273–284

    Article  CAS  Google Scholar 

  50. Jha SN, Jaiswal P, Borah A, Gautam AK, Srivastava N (2015) Detection and quantification of urea in milk using attenuated total reflectance-Fourier transform infrared spectroscopy. Food Bioprocess Technol 8(4):926–933

    Article  CAS  Google Scholar 

  51. Vongsvivut J, Heraud P, Zhang W, Kralovec JA, McNaughton D, Barrow CJ (2014) Rapid determination of protein contents in microencapsulated fish oil supplements by ATR-FTIR spectroscopy and partial least square regression (PLSR) analysis. Food Bioprocess Technol 7(1):265–277

    Article  CAS  Google Scholar 

  52. Su W-H, Bakalis S, Sun D-W (2018) Fingerprinting study of tuber ultimate compressive strength at different microwave drying times using mid-infrared imaging spectroscopy. Dry Technol:1–18

  53. Lu X, Al-Qadiri HM, Lin M, Rasco BA (2011) Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol 4(6):919–935

    Article  Google Scholar 

  54. Wu D, Nie P, He Y, Bao Y (2012) Determination of calcium content in powdered milk using near and mid-infrared spectroscopy with variable selection and chemometrics. Food Bioprocess Technol 5(4):1402–1410

    Article  CAS  Google Scholar 

  55. Alexandrakis D, Downey G, Scannell AG (2012) Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics. Food Bioprocess Technol 5(1):338–347

    Article  CAS  Google Scholar 

  56. Krishnamurthy K, Tewari JC, Irudayaraj J, Demirci A (2010) Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food Bioprocess Technol 3(1):93

    Article  Google Scholar 

  57. Botosoa EP, Karoui R (2013) Characterisation of Emmental cheeses within different brand products by combining infrared and fluorescence spectroscopies. Food Bioprocess Technol 6(9):2365–2375

    Article  Google Scholar 

  58. Contreras MP, Avula RY, Singh RK (2010) Evaluation of nano zinc (ZnO) for surface enhancement of ATR–FTIR spectra of butter and spread. Food Bioprocess Technol 3(4):629–635

    Article  CAS  Google Scholar 

  59. Seddon AB (2013) Mid-infrared (IR)–a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B 250(5):1020–1027

    Article  CAS  Google Scholar 

  60. Falk HM, Reichling P, Andersen C, Benz R (2015) Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy. Bioprocess Biosyst Eng 38(2):237–249

    Article  CAS  PubMed  Google Scholar 

  61. Li C, Yang Y, Wu D, Li T, Yin Y, Li G (2016) Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chem Sci 7(5):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hussein HJ, Hadi MY, Hameed IH (2016) Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography-mass spectrometry. J Pharmacogn Phytother 8(3):60–89

    Article  CAS  Google Scholar 

  63. Su W-H, Arvanitoyannis IS, Sun D-W (2018) Trends in food authentication, Modern techniques for food authentication. Academic Press, pp 731–758

  64. Su W-H, Bakalis S, Sun D-W (2019) Potato hierarchical clustering and doneness degree determination by near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy. J Food Meas Charact:1–14

  65. Mahesh S, Jayas D, Paliwal J, White N (2015) Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Technol 8(1):31–40

    Article  CAS  Google Scholar 

  66. Su W-H, Sun D-W (2016) Multivariate analysis of hyper/multi-spectra for determining volatile compounds and visualizing cooking degree during low-temperature baking of tubers. Comput Electron Agric 127:561–571

    Article  Google Scholar 

  67. Su W-H, Sun D-W (2016) Potential of hyperspectral imaging for visual authentication of sliced organic potatoes from potato and sweet potato tubers and rapid grading of the tubers according to moisture proportion. Comput Electron Agric 125:113–124

    Article  Google Scholar 

  68. Caesar LK, Kvalheim OM, Cech NB (2018) Hierarchical cluster analysis of technical replicates to identify interferents in untargeted mass spectrometry metabolomics. Anal Chim Acta 1021:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szabó É, Gergely S, Salgó A (2018) Linear discriminant analysis, partial least squares discriminant analysis, and soft independent modeling of class analogy of experimental and simulated near-infrared spectra of a cultivation medium for mammalian cells. J Chemom 32(4):e3005

    Article  CAS  Google Scholar 

  70. Cozzolino D, Murray I (2012) A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. Appl Spectrosc Rev 47(3):207–218

    Article  Google Scholar 

  71. Sahar A, Dufour É (2014) Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets. LWT-Food Sci Technol 56(2):315–320

    Article  CAS  Google Scholar 

  72. Alamprese C, Casale M, Sinelli N, Lanteri S, Casiraghi E (2013) Detection of minced beef adulteration with Turkey meat by UV–Vis, NIR and MIR spectroscopy. LWT-Food Sci Technol 53(1):225–232

    Article  CAS  Google Scholar 

  73. Bonfatti V, Di Martino G, Carnier P (2011) Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows. J Dairy Sci 94(12):5776–5785

    Article  CAS  PubMed  Google Scholar 

  74. Javidnia K, Parish M, Karimi S, Hemmateenejad B (2013) Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: a comparative study between different modeling methods. Spectrochim Acta A Mol Biomol Spectrosc 104:175–181

    Article  CAS  PubMed  Google Scholar 

  75. Versari A, Laghi L, Thorngate JH, Boulton RB (2011) Prediction of colloidal stability in white wines using infrared spectroscopy. J Food Eng 104(2):239–245

    Article  CAS  Google Scholar 

  76. Clark CJ, Shaw ML, Wright KM, McCallum JA (2018) Quantification of free sugars, fructan, pungency and sweetness indices in onion populations by FT-MIR spectroscopy. J Sci Food Agric 98:5525–5533

    Article  CAS  PubMed  Google Scholar 

  77. Ayvaz H, Bozdogan A, Giusti MM, Mortas M, Gomez R, Rodriguez-Saona LE (2016) Improving the screening of potato breeding lines for specific nutritional traits using portable mid-infrared spectroscopy and multivariate analysis. Food Chem 211:374–382

    Article  CAS  PubMed  Google Scholar 

  78. Cozzolino D, Roumeliotis S, Eglinton J (2014) An attenuated total reflectance mid infrared (ATR-MIR) spectroscopy study of gelatinization in barley. Carbohydr Polym 108:266–271

    Article  CAS  PubMed  Google Scholar 

  79. Ferreira D, Galão O, Pallone J, Poppi R (2014) Comparison and application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples. Food Control 35(1):227–232

    Article  CAS  Google Scholar 

  80. Ścibisz I, Reich M, Bureau S, Gouble B, Causse M, Bertrand D, Renard CM (2011) Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chem 125(4):1390–1397

    Article  CAS  Google Scholar 

  81. Fernández-González A, Montejo-Bernardo JM, Rodríguez-Prieto H, Castaño-Monllor C, Badía-Laíño R, Díaz-García ME (2014) Easy-to-use analytical approach based on ATR–FTIR and chemometrics to identify apple varieties under protected designation of origin (PDO). Comput Electron Agric 108:166–172

    Article  Google Scholar 

  82. Prieto N, Roehe R, Lavin P, Batten G, Andres S (2009) Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review. Meat Sci 83(2):175–186

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Peng J, Xie C, Bao Y, He Y (2015) Fruit quality evaluation using spectroscopy technology: a review. Sensors (Basel) 15(5):11889–11927

    Article  Google Scholar 

  84. Su W-H, He H-J, Sun D-W (2017) Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Crit Rev Food Sci Nutr 57(5):1039–1051

    Article  CAS  PubMed  Google Scholar 

  85. Lopez A, Arazuri S, Garcia I, Mangado J, Jaren C (2013) A review of the application of near-infrared spectroscopy for the analysis of potatoes. J Agric Food Chem 61(23):5413–5424

    Article  CAS  PubMed  Google Scholar 

  86. Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W, Nicolaï B (2011) NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food Bioprocess Technol 5(2):425–444

    Article  CAS  Google Scholar 

  87. Lohumi S, Lee S, Lee H, Cho B-K (2015) A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci Technol 46(1):85–98

    Article  CAS  Google Scholar 

  88. Gupta V (2015) Principles and applications of quantum chemistry. Academic Press, 2015. Location: London, UK. Pages: 1–446

  89. W.-H. Su, D.-W. Sun, Advanced analysis of roots and tubers by hyperspectral techniques, (2018)

    Google Scholar 

  90. Su W-H, Bakalis S, Sun D-W (2018) Fourier transform mid-infrared-attenuated total reflectance (FTMIR-ATR) microspectroscopy for determining textural property of microwave baked tuber. J Food Eng 218:1–13

    Article  CAS  Google Scholar 

  91. Davis R, Mauer L (2010) Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr Res Technol Educ Top Appl Microbiol Microbial Biotechnol 2:1582–1594

    Google Scholar 

  92. Bell R (2012) Introductory Fourier transform spectroscopy. Elsevier, 2012. Academic Press, location: New York, US. Pages: 1–381.

  93. De Bruyne S, Speeckaert MM, Delanghe JR (2018) Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci 55(1):1–20

    Article  CAS  PubMed  Google Scholar 

  94. Stuart B (2005) Infrared spectroscopy. Wiley Online Library

  95. Haas J, Mizaikoff B (2016) Advances in mid-infrared spectroscopy for chemical analysis. Annu Rev Anal Chem 9:45–68

    Article  Google Scholar 

  96. Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem 12:10815–10837

    Google Scholar 

  97. Bernazzani P, Chapados C, Delmas G (2000) Double-helical network in amylose as seen by slow calorimetry and FTIR. J Polym Sci B Polym Phys 38(12):1662–1677

    Article  CAS  Google Scholar 

  98. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74(3):141–173

    Article  CAS  PubMed  Google Scholar 

  99. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277(2):167–176

    Article  CAS  PubMed  Google Scholar 

  100. Luna AS, da Silva AP, Pinho JS, Ferré J, Boqué R (2015) A novel approach to discriminate transgenic from non-transgenic soybean oil using FT-MIR and chemometrics. Food Res Int 67:206–211

    Article  CAS  Google Scholar 

  101. Su W-H, Bakalis S, Sun D-W (2019) Chemometrics in tandem with near infrared (NIR) hyperspectral imaging and Fourier transform mid infrared (FT-MIR) microspectroscopy for variety identification and cooking loss determination of sweet potato. Biosyst Eng 180:70–86

    Article  Google Scholar 

  102. Rahmelow K, Hubner W (1997) Infrared spectroscopy in aqueous solution: difficulties and accuracy of water subtraction. Appl Spectrosc 51(2):160–170

    Article  CAS  Google Scholar 

  103. Etzion Y, Linker R, Cogan U, Shmulevich I (2004) Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. J Dairy Sci 87(9):2779–2788

    Article  CAS  PubMed  Google Scholar 

  104. Su WH, Sun DW (2018) Multispectral imaging for plant food quality analysis and visualization. Compr Rev Food Sci Food Saf 17(1):220–239

    Article  PubMed  Google Scholar 

  105. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  106. Keating ME, Nawaz H, Bonnier F, Byrne HJ (2015) Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets. Analyst 140(7):2482–2492

    Article  CAS  PubMed  Google Scholar 

  107. Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Cruz AGD, Jarvis B, Rodionova OY, Pomerantsev A (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci Food Saf 17(3):663–677

    Article  PubMed  Google Scholar 

  108. Su WH, Sun DW (2018) Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review. Compr Rev Food Sci Food Saf 17(1):104–122

    Article  PubMed  Google Scholar 

  109. Su W-H, Sun D-W, He J-G, Zhang L-B (2017) Variation analysis in spectral indices of volatile chlorpyrifos and non-volatile imidacloprid in jujube (Ziziphus jujuba mill.) using near-infrared hyperspectral imaging (NIR-HSI) and gas chromatograph-mass spectrometry (GC–MS). Comput Electron Agric 139:41–55

    Article  Google Scholar 

  110. Araújo MCU, Saldanha TCB, Galvao RKH, Yoneyama T, Chame HC, Visani V (2001) The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom Intell Lab Syst 57(2):65–73

    Article  Google Scholar 

  111. Cai W, Li Y, Shao X (2008) A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom Intell Lab Syst 90(2):188–194

    Article  CAS  Google Scholar 

  112. Su W-H, Sun D-W (2017) Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic avatar wheat (Triticum spp.) flour. J Food Eng 200:59–69

    Article  CAS  Google Scholar 

  113. He H-J, Wu D, Sun D-W (2014) Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. J Food Eng 126:156–164

    Article  Google Scholar 

  114. Li H, Liang Y, Xu Q, Cao D (2009) Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta 648(1):77–84

    Article  CAS  PubMed  Google Scholar 

  115. Jarvis RM, Goodacre R (2004) Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics 21(7):860–868

    Article  PubMed  Google Scholar 

  116. Shahin MA, Symons SJ (2011) Detection of Fusarium damaged kernels in Canada Western red spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Comput Electron Agric 75(1):107–112

    Article  Google Scholar 

  117. Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, Blasco J (2013) Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food Bioprocess Technol 6(2):530–541

    Article  Google Scholar 

  118. Pu H, Sun D-W, Ma J, Liu D, Cheng J-h (2014) Using wavelet textural features of visible and near infrared hyperspectral image to differentiate between fresh and frozen–thawed pork. Food Bioprocess Technol 7(11):3088–3099

    Article  Google Scholar 

  119. Nashat S, Abdullah A, Aramvith S, Abdullah M (2011) Support vector machine approach to real-time inspection of biscuits on moving conveyor belt. Comput Electron Agric 75(1):147–158

    Article  Google Scholar 

  120. Manuelian C, Visentin G, Boselli C, Giangolini G, Cassandro M, De Marchi M (2017) Prediction of milk coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy. J Dairy Sci 100(9):7083–7087

    Article  CAS  PubMed  Google Scholar 

  121. Caredda M, Addis M, Ibba I, Leardi R, Scintu MF, Piredda G, Sanna G (2017) Building of prediction models by using mid-infrared spectroscopy and fatty acid profile to discriminate the geographical origin of sheep milk. LWT-Food Sci Technol 75:131–136

    Article  CAS  Google Scholar 

  122. Vieira SM, De Souza LM, França AS, Oliveira LS, Neto WB (2016) FTMIR-PLS as a promising method for rapid detection of adulteration by waste whey in raw milk. Dairy Sci Technol 96(1):123–131

    Article  Google Scholar 

  123. Caredda M, Addis M, Ibba I, Leardi R, Scintu MF, Piredda G, Sanna G (2016) Prediction of fatty acid content in sheep milk by mid-infrared spectrometry with a selection of wavelengths by genetic algorithms. LWT-Food Sci Technol 65:503–510

    Article  CAS  Google Scholar 

  124. Calamari L, Gobbi L, Bani P (2016) Improving the prediction ability of FT-MIR spectroscopy to assess titratable acidity in cow’s milk. Food Chem 192:477–484

    Article  CAS  PubMed  Google Scholar 

  125. Bonfatti V, Degano L, Menegoz A, Carnier P (2016) Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental. J Dairy Sci 99(10):8216–8221

    Article  CAS  PubMed  Google Scholar 

  126. Bonfatti V, Cecchinato A, Carnier P (2015) Predictive ability of Fourier-transform mid-infrared spectroscopy to assess CSN genotypes and detailed protein composition of buffalo milk. J Dairy Sci 98(9):6583–6587

    Article  CAS  PubMed  Google Scholar 

  127. Toffanin V, De Marchi M, Lopez-Villalobos N, Cassandro M (2015) Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties. Int Dairy J 41:68–73

    Article  CAS  Google Scholar 

  128. Upadhyay N, Jaiswal P, Jha SN (2018) Application of attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat). J Mol Struct 1153:275–281

    Article  CAS  Google Scholar 

  129. Pfister MK, Horn B, Riedl J, Esslinger S, Fauhl-Hassek C (2018) Vibrational spectroscopy in practice: detection of mineral oil in sunflower oil with near-and mid-infrared spectroscopy. NIR News 29(3):6–11

    Article  Google Scholar 

  130. Visani V, Netto JMS, Honorato RS, de Araújo MCU, Honorato FA (2017) Screening analysis of garlic-oil capsules by infrared spectroscopy and chemometrics. Microchem J 133:480–484

    Article  CAS  Google Scholar 

  131. Jolayemi OS, Tokatli F, Buratti S, Alamprese C (2017) Discriminative capacities of infrared spectroscopy and e-nose on Turkish olive oils. Eur Food Res Technol 243(11):2035–2042

    Article  CAS  Google Scholar 

  132. Dymińska L, Calik M, Albegar AMM, Zając A, Kostyń K, Lorenc J, Hanuza J (2017) Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. Int J Food Prop 20(9):2003–2015

    Article  CAS  Google Scholar 

  133. Rohman A, Lumakso FA, Riyanto S (2016) Use of partial least square-discriminant analysis combined with mid infrared spectroscopy for avocado oil authentication. Res J Med Plants 10(2):175–180

    Article  CAS  Google Scholar 

  134. Jović O (2016) Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins. Food Chem 213:791–798

    Article  CAS  PubMed  Google Scholar 

  135. Hirri A, Bassbasi M, Platikanov S, Tauler R, Oussama A (2016) FTIR spectroscopy and PLS-DA classification and prediction of four commercial grade virgin olive oils from Morocco. Food Anal Methods 9(4):974–981

    Article  Google Scholar 

  136. Dominguez-Vidal A, Pantoja-de la Rosa J, Cuadros-Rodríguez L (2016) Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy. Food Chem 190:122–127

    Article  CAS  PubMed  Google Scholar 

  137. de Santana FB, Gontijo LC, Mitsutake H, Mazivila SJ, de Souza LM, Neto WB (2016) Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chem 209:228–233

    Article  CAS  PubMed  Google Scholar 

  138. De Luca M, Restuccia D, Clodoveo ML, Puoci F, Ragno G (2016) Chemometric analysis for discrimination of extra virgin olive oils from whole and stoned olive pastes. Food Chem 202:432–437

    Article  CAS  PubMed  Google Scholar 

  139. Zhao X, Dong D, Zheng W, Jiao L, Lang Y (2015) Discrimination of adulterated sesame oil using mid-infrared spectroscopy and chemometrics. Food Anal Methods 8(9):2308–2314

    Article  Google Scholar 

  140. Wójcicki K, Khmelinskii I, Sikorski M, Sikorska E (2015) Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem 187:416–423

    Article  CAS  PubMed  Google Scholar 

  141. Mendes TO, da Rocha RA, Porto BL, de Oliveira MA, dos Anjos VdC, Bell MJ (2015) Quantification of extra-virgin olive oil adulteration with soybean oil: a comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches. Food Anal Methods 8(9):2339–2346

    Article  Google Scholar 

  142. Machado M, Machado N, Gouvinhas I, Cunha M, de Almeida JM, Barros AI (2015) Quantification of chemical characteristics of olive fruit and oil of cv Cobrançosa in two ripening stages using MIR spectroscopy and chemometrics. Food Anal Methods 8(6):1490–1498

    Article  Google Scholar 

  143. Lumakso FA, Riyanto S, SA SA, Rosman AS, Yusoff FM, Rohman A (2015) Application of chemometrics in combination with Fourier transform mid infrared spectroscopy for authentication of avocado oil. J Food Pharm Sci 3(1):12–17

  144. Hirri A, Gammouh M, Gorfti A, Kzaiber F, Bassbasi M, Souhassou S, Balouki A, Oussama A (2015) The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and estimation of extra virgin olive oil adulteration with old olive oil. Sky J Food Sci:60–66

  145. de Souza LM, de Santana FB, Gontijo LC, Mazivila SJ, Neto WB (2015) Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS. Food Chem 182:35–40

    Article  CAS  PubMed  Google Scholar 

  146. Borràs E, Mestres M, Aceña L, Busto O, Ferré J, Boqué R, Calvo A (2015) Identification of olive oil sensory defects by multivariate analysis of mid infrared spectra. Food Chem 187:197–203

    Article  CAS  PubMed  Google Scholar 

  147. Grijalva-Verdugo C, Hernández-Martínez M, Meza-Márquez OG, Gallardo-Velázquez T, Osorio-Revilla G (2018) FT-MIR spectroscopy and multivariate analysis for determination of bioactive compounds and antioxidant capacity in Cabernet Sauvignon wines. CyTA-J Food 16(1):561–569

    Article  CAS  Google Scholar 

  148. Shen F, Wu Q, Wei Y, Liu X, Tang P (2017) Evaluation of near-infrared and mid-infrared spectroscopy for the determination of routine parameters in Chinese rice wine. J Food Process Preserv 41(3):1–9

  149. Canal C, Ozen B (2017) Monitoring of wine process and prediction of its parameters with mid-infrared spectroscopy. J Food Process Eng 40(1):1–10

  150. Basalekou M, Pappas C, Tarantilis P, Kotseridis Y, Kallithraka S (2017) Wine authentication with Fourier transform infrared spectroscopy: a feasibility study on variety, type of barrel wood and ageing time classification. Int J Food Sci Technol 52(6):1307–1313

    Article  CAS  Google Scholar 

  151. Ristic R, Cozzolino D, Jeffery DW, Gambetta JM, Bastian SE (2016) Prediction of phenolic composition of shiraz wines using attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy. Am J Enol Vitic 67:460–465

    Article  CAS  Google Scholar 

  152. Kim D-Y, Cho B-K, Lee SH, Kwon K, Park ES, Lee W-H (2016) Application of Fourier transform-mid infrared reflectance spectroscopy for monitoring Korean traditional rice wine ‘Makgeolli’fermentation. Sensors Actuators B Chem 230:753–760

    Article  CAS  Google Scholar 

  153. dos Santos CAT, Páscoa RN, Porto PA, Cerdeira AL, Lopes JA (2016) Application of Fourier-transform infrared spectroscopy for the determination of chloride and sulfate in wines. LWT-Food Sci Technol 67:181–186

    Article  CAS  Google Scholar 

  154. Wu Z, Xu E, Long J, Zhang Y, Wang F, Xu X, Jin Z, Jiao A (2015) Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control 50:405–412

    Article  CAS  Google Scholar 

  155. Wu Z, Xu E, Long J, Wang F, Xu X, Jin Z, Jiao A (2015) Use of attenuated total reflectance mid-infrared spectroscopy for rapid prediction of amino acids in Chinese rice wine. J Food Sci 80(8):C1670–C1679

    Article  CAS  PubMed  Google Scholar 

  156. Culbert J, Cozzolino D, Ristic R, Wilkinson K (2015) Classification of sparkling wine style and quality by MIR spectroscopy. Molecules 20(5):8341–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Costa AMS, Sobral MMC, Delgadillo I, Cerdeira A, Rudnitskaya A (2015) Astringency quantification in wine: comparison of the electronic tongue and FT-MIR spectroscopy. Sensors Actuators B Chem 207 (1095–1103

    Article  CAS  Google Scholar 

  158. Silva SD, Feliciano RP, Boas LV, Bronze MR (2014) Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 150:489–493

    Article  CAS  PubMed  Google Scholar 

  159. Gordon R, Chapman J, Power A, Chandra S, Roberts J, Cozzolino D (2018) Unfrazzled by fizziness: identification of beers using attenuated Total reflectance mid-infrared spectroscopy and multivariate analysis. Food Anal Methods 11(9):2360–2367

  160. Debebe A, Redi-Abshiro M, Chandravanshi BS (2017) Non-destructive determination of ethanol levels in fermented alcoholic beverages using Fourier transform mid-infrared spectroscopy. Chem Central J 11(1):27

    Article  Google Scholar 

  161. Biancolillo A, Bucci R, Magrì AL, Magrì AD, Marini F (2014) Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication. Anal Chim Acta 820:23–31

    Article  CAS  PubMed  Google Scholar 

  162. Cozzolino D, Schultz D, Allder K, Eglinton J, Roumeliotis S (2014) Feasibility study on the use of attenuated total reflectance mid-infrared spectroscopy for the analysis of malt quality parameters in wort. J Inst Brew 120(4):385–389

    CAS  Google Scholar 

  163. Başar B, Özdemir D (2018) Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic algorithm based multivariate calibration. J Sci Food Agric 98:5616–5624

    Article  CAS  PubMed  Google Scholar 

  164. Sultanbawa Y, Cozzolino D, Fuller S, Cusack A, Currie M, Smyth H (2015) Infrared spectroscopy as a rapid tool to detect methylglyoxal and antibacterial activity in Australian honeys. Food Chem 172:207–212

    Article  CAS  PubMed  Google Scholar 

  165. Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F (2015) Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem 170:234–240

    Article  CAS  PubMed  Google Scholar 

  166. Ayvaz H, Sierra-Cadavid A, Aykas DP, Mulqueeney B, Sullivan S, Rodriguez-Saona LE (2016) Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control 66:79–86

    Article  CAS  Google Scholar 

  167. Caramês ET, Alamar PD, Poppi RJ, Pallone JAL (2017) Rapid assessment of total phenolic and anthocyanin contents in grape juice using infrared spectroscopy and multivariate calibration. Food Anal Methods 10(5):1609–1615

    Article  Google Scholar 

  168. MacGibbon A, McLennan W (1987) Hardness of New-Zealand patted butter-seasonal and regional variations. N Z J Dairy Sci Technol 22(2):143–156

    Google Scholar 

  169. De Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zong G, Li Y, Sampson L, Dougherty LW, Willett WC, Wanders AJ, Alssema M, Zock PL, Hu FB, Sun Q (2018) Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am J Clin Nutr 107(3):445–453

    Article  PubMed  PubMed Central  Google Scholar 

  171. De Jong C, Badings HT (1990) Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis. J High Resolut Chromatogr 13(2):94–98

    Article  Google Scholar 

  172. Eskildsen C, Rasmussen M, Engelsen S, Larsen LB, Poulsen NA, Skov T (2014) Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: understanding predictions of highly collinear reference variables. J Dairy Sci 97(12):7940–7951

    Article  CAS  PubMed  Google Scholar 

  173. Ferrand-Calmels M, Palhière I, Brochard M, Leray O, Astruc J-M, Aurel M-R, Barbey S, Bouvier F, Brunschwig P, Caillat H (2014) Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry. J Dairy Sci 97(1):17–35

    Article  CAS  PubMed  Google Scholar 

  174. Soyeurt H, Dardenne P, Dehareng F, Lognay G, Veselko D, Marlier M, Bertozzi C, Mayeres P, Gengler N (2006) Estimating fatty acid content in cow milk using mid-infrared spectrometry. J Dairy Sci 89(9):3690–3695

    Article  CAS  PubMed  Google Scholar 

  175. Rutten M, Bovenhuis H, Hettinga K, van Valenberg H, Van Arendonk J (2009) Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. J Dairy Sci 92(12):6202–6209

    Article  CAS  PubMed  Google Scholar 

  176. Comin A, Cassandro M, Chessa S, Ojala M, Dal Zotto R, De Marchi M, Carnier P, Gallo L, Pagnacco G, Bittante G (2008) Effects of composite β-and κ-casein genotypes on milk coagulation, quality, and yield traits in Italian Holstein cows. J Dairy Sci 91(10):4022–4027

    Article  CAS  PubMed  Google Scholar 

  177. Caroli A, Chessa S, Erhardt G (2009) Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci 92(11):5335–5352

    Article  CAS  PubMed  Google Scholar 

  178. Recio I, Olieman C (1996) Determination of denatured serum proteins in the casein fraction of heat-treated milk by capillary zone electrophoresis. Electrophoresis 17(7):1228–1233

    Article  CAS  PubMed  Google Scholar 

  179. Bobe G, Beitz DC, Freeman AE, Lindberg GL (1998) Separation and quantification of bovine milk proteins by reversed-phase high-performance liquid chromatography. J Agric Food Chem 46(2):458–463

    Article  CAS  PubMed  Google Scholar 

  180. Broutin P (2006) New applications of mid-infra-red spectrometry for the analysis of milk and milk products. 1 casein. IDF Bull 406:2–21

    Google Scholar 

  181. Rutten M, Bovenhuis H, Heck J, Van Arendonk J (2011) Predicting bovine milk protein composition based on Fourier transform infrared spectra. J Dairy Sci 94(11):5683–5690

    Article  CAS  PubMed  Google Scholar 

  182. Sanchez MP, Ferrand M, Gelé M, Pourchet D, Miranda G, Martin P, Brochard M, Boichard D (2017) Genetic parameters for milk protein composition predicted using mid-infrared spectroscopy in the French Montbéliarde, Normande, and Holstein dairy cattle breeds. J Dairy Sci 100(8):6371–6375

    Article  CAS  PubMed  Google Scholar 

  183. Pretto D, De Marchi M, Penasa M, Cassandro M (2013) Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J Dairy Res 80(1):1–5

    Article  CAS  PubMed  Google Scholar 

  184. Riddell-Lawrence S, Hicks C (1989) Effect of curd firmness on stirred curd cheese yield1. J Dairy Sci 72(2):313–321

    Article  Google Scholar 

  185. Cecchinato A, Cipolat-Gotet C, Casellas J, Penasa M, Rossoni A, Bittante G (2013) Genetic analysis of rennet coagulation time, curd-firming rate, and curd firmness assessed over an extended testing period using mechanical and near-infrared instruments. J Dairy Sci 96(1):50–62

    Article  CAS  PubMed  Google Scholar 

  186. McSweeney PL, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80(3):293–324

    Article  CAS  Google Scholar 

  187. Eskildsen C, Skov T, Hansen M, Larsen LB, Poulsen NA (2016) Quantification of bovine milk protein composition and coagulation properties using infrared spectroscopy and chemometrics: a result of collinearity among reference variables. J Dairy Sci 99(10):8178–8186

    Article  CAS  PubMed  Google Scholar 

  188. Cassandro M, Battagin M, Penasa M, De Marchi M (2015) Genetic relationships of milk coagulation properties with body condition score and linear type traits in Holstein-Friesian cows1. J Dairy Sci 98(1):685–691

    Article  CAS  PubMed  Google Scholar 

  189. Visentin G, De Marchi M, Berry D, McDermott A, Fenelon M, Penasa M, McParland S (2017) Factors associated with milk processing characteristics predicted by mid-infrared spectroscopy in a large database of dairy cows. J Dairy Sci 100(4):3293–3304

    Article  CAS  PubMed  Google Scholar 

  190. Ferragina A, Cipolat-Gotet C, Cecchinato A, Pazzola M, Dettori M, Vacca G, Bittante G (2017) Prediction and repeatability of milk coagulation properties and curd-firming modeling parameters of ovine milk using Fourier-transform infrared spectroscopy and Bayesian models. J Dairy Sci 100(5):3526–3538

    Article  CAS  PubMed  Google Scholar 

  191. Visentin G, Penasa M, Gottardo P, Cassandro M, De Marchi M (2016) Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm. J Dairy Sci 99(10):8137–8145

    Article  CAS  PubMed  Google Scholar 

  192. Colinet F, Soyeurt H, Anceau C, Vanlierde A, Keyen N, Dardenne P, Gengler N, Sindic M (2010) Potential estimation of titratable acidity in cow milk using mid-infrared spectrometry. ICAR Techn Ser 14:239–243

    Google Scholar 

  193. De Marchi M, Fagan CC, O’donnell C, Cecchinato A, Dal Zotto R, Cassandro M, Penasa M, Bittante G (2009) Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy. J Dairy Sci 92(1):423–432

    Article  CAS  PubMed  Google Scholar 

  194. Cashman KD (2006) Milk minerals (including trace elements) and bone health. Int Dairy J 16(11):1389–1398

    Article  CAS  Google Scholar 

  195. Haug A, Høstmark AT, Harstad OM (2007) Bovine milk in human nutrition–a review. Lipids Health Dis 6(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Stawarz R, Formicki G, Massanyi P (2007) Daily fluctuations and distribution of xenobiotics, nutritional and biogenic elements in human milk in southern Poland. J Environ Sci Health A 42(8):1169–1175

    Article  CAS  Google Scholar 

  197. Toffanin V, Penasa M, McParland S, Berry DP, Cassandro M, De Marchi M (2015) Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein–Friesian cows. Animal 9(5):775–780

    Article  CAS  PubMed  Google Scholar 

  198. Malacarne M, Visentin G, Summer A, Cassandro M, Penasa M, Bolzoni G, Zanardi G, De Marchi M (2018) Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk milk. J Dairy Res 85(1):83–86

    Article  CAS  PubMed  Google Scholar 

  199. Soyeurt H, Bruwier D, Romnee J-M, Gengler N, Bertozzi C, Veselko D, Dardenne P (2009) Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J Dairy Sci 92(6):2444–2454

    Article  CAS  PubMed  Google Scholar 

  200. Gottardo P, De Marchi M, Cassandro M, Penasa M (2015) Improving the accuracy of mid-infrared prediction models by selecting the most informative wavelengths. J Dairy Sci 98(6):4168–4173

    Article  CAS  PubMed  Google Scholar 

  201. Scintu M, Piredda G (2007) Typicity and biodiversity of goat and sheep milk products. Small Rumin Res 68(1–2):221–231

    Article  Google Scholar 

  202. Karoui R, Hammami M, Rouissi H, Blecker C (2011) Mid infrared and fluorescence spectroscopies coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem 127(2):743–748

    Article  CAS  PubMed  Google Scholar 

  203. Capuano E, Rademaker J, van den Bijgaart H, M. van Ruth S (2014) Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Res Int 60:59–65

    Article  CAS  Google Scholar 

  204. Rampazzo V, Ribeiro LF, Santos PM, Ferreira MCM, Bona E, Maciel GM, Haminiuk CWI (2018) Multi-block analysis coupled with GC-FID and ATR-MIR for the evaluation of thermal degradation in vegetable oils. J Chromatogr B 1081:118–125

    Article  CAS  Google Scholar 

  205. de Almeida FS, de Andrade Silva CA, Lima SM, Suarez YR, da Cunha Andrade LH (2018) Use of Fourier transform infrared spectroscopy to monitor sugars in the beer mashing process. Food Chem 263:112–118

    Article  CAS  PubMed  Google Scholar 

  206. Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27(6):677–689

    Article  CAS  PubMed  Google Scholar 

  207. Mandal MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2):154–160

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sivakesava S, Irudayaraj J (2002) Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy. Int J Food Sci Technol 37(4):351–360

    Article  CAS  Google Scholar 

  209. Das C, Chakraborty S, Acharya K, Bera NK, Chattopadhyay D, Karmakar A, Chattopadhyay S (2017) FT-MIR supported electrical impedance spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 171:327–334

    Article  CAS  PubMed  Google Scholar 

  210. Naila A, Flint SH, Sulaiman A, Ajit A, Weeds Z (2018) Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 90:152–165

    Article  CAS  Google Scholar 

  211. He J, Rodriguez-Saona LE, Giusti MM (2007) Midinfrared spectroscopy for juice authentication rapid differentiation of commercial juices. J Agric Food Chem 55(11):4443–4452

    Article  CAS  PubMed  Google Scholar 

  212. Kelly JD, Downey G (2005) Detection of sugar adulterants in apple juice using Fourier transform infrared spectroscopy and chemometrics. J Agric Food Chem 53(9):3281–3286

    Article  CAS  PubMed  Google Scholar 

  213. Leopold L, Diehl H, Socaciu C (2009) Quantification of glucose, fructose and sucrose in apple juices using ATR-MIR spectroscopy coupled with chemometry. Bull UASMV Agric 66(2):350–357

    CAS  Google Scholar 

  214. Vardin H, Tay A, Ozen B, Mauer L (2008) Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chem 108(2):742–748

    Article  CAS  PubMed  Google Scholar 

  215. Igual M, García-Martínez E, Camacho M, Martínez-Navarrete N (2010) Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem 118(2):291–299

    Article  CAS  Google Scholar 

  216. Reid LM, Woodcock T, O’Donnell CP, Kelly JD, Downey G (2005) Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Res Int 38(10):1109–1115

    Article  CAS  Google Scholar 

  217. Nair R, Venkatesh S, Athmaselvi K, Thakur S (2016) Rapid estimation and quantification of sucrose content in fruit juices using Fourier transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy. J Food Meas Charact 10(1):24–31

    Article  Google Scholar 

  218. Mellado-Mojica E, López MG (2015) Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem 167:349–357

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the UCD-CSC Scholarship Scheme supported by the University College Dublin (UCD) and the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wen Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, WH., Sun, DW. Mid-infrared (MIR) Spectroscopy for Quality Analysis of Liquid Foods. Food Eng Rev 11, 142–158 (2019). https://doi.org/10.1007/s12393-019-09191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09191-2

Keywords

Navigation