Skip to main content
Log in

Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

These days, food safety is getting more attention than in the recent past due to consumer awareness, regulations, and industrial competition to offer best quality products. Meat and meat products are very valuable but highly perishable. There is a need for reliable assessment techniques to ensure the safety and quality of these products throughout their shelf life. Classical analytical methods have been replaced with alternative, rapid, simple, and noninvasive methods to enhance productivity and profitability in the meat supply chain. Fourier-transform infrared (FTIR) spectroscopy has become a valuable analytical technique for structural or functional studies related to foods as a rapid, nondestructive, cost-efficient, and sensitive physicochemical fingerprinting method. This technique is readily applicable for routine quality control or industrial applications with a high degree of confidence. FTIR spectroscopy coupled with chemometrics has drawn attention to quality control, safety assessment, and authentication purposes in the meat and meat products domain. This review covers fundamental knowledge on FTIR spectroscopy coupled with chemometric techniques, as well as major applications of this robust method in meat science and technology for adulteration detection, monitoring biochemical and microbiological spoilage and shelf life, determining changes in chemical components such as proteins and lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. OECD/FAO (2019) OECD-FAO Agricultural Outlook 2019-2028. OECD Publishing, Paris

    Google Scholar 

  2. Grunert KG, Bredahl L, Brunsø K (2004) Consumer perception of meat quality and implications for product development in the meat sector- a review. Meat Sci 66:259–272

    PubMed  Google Scholar 

  3. Troy DJ, Ojha KS, Kerry JP, Tiwari BK (2016) Sustainable and consumer-friendly emerging technologies for application within the meat industry: an overview. Meat Sci 120:2–9

    PubMed  Google Scholar 

  4. ElMasry G, Sun D-W (2010) Meat quality assessment using a hyperspectral imaging system. In: Sun D-W (ed) Hyperspectral Imaging for Food Quality Analysis and Control, 1st edn. Academic Press, New York

    Google Scholar 

  5. Herrero AM (2008) Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 107:1642–1651

    CAS  Google Scholar 

  6. Taheri-Garavand A, Fatahi S, Omid M, Makino Y (2019) Meat quality evaluation based on computer vision technique: a review. Meat Sci 156:183–195

    PubMed  Google Scholar 

  7. Abbas O, Zadravec M, Baeten V, Mikuš T, Lešić T, Vulić A, Prpić J, Jemeršić L, Pleadin J (2018) Analytical methods used for the authentication of food of animal origin. Food Chem 246:6–17

    CAS  PubMed  Google Scholar 

  8. Al-Jowder O, Kemsley EK, Wilson RH (1997) Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study. Food Chem 59(2):195–201

    CAS  Google Scholar 

  9. Xiong Z, Sun DW, Pu H, Gao W, Dai Q (2017) Applications of emerging imaging techniques for meat quality and safety detection and evaluation: a review. Crit Rev Food Sci Nutr 57(4):755–768

    CAS  PubMed  Google Scholar 

  10. Giaretta E, Mordenti A, Palmonari A, Brogna N, Canestrari G, Belloni P, Cavallini D, Mammi L, Cabbri R, Formigoni A (2019) NIRs calibration models for chemical composition and fatty acid families of raw and freeze-dried beef: a comparison. J Food Compos Anal 83:103257

    CAS  Google Scholar 

  11. Wojnowski W, Majchrzak T, Dymerski T, Gębicki J, Namieśnik J (2017) Electronic noses: powerful tools in meat quality assessment. Meat Sci 131:119–131

    CAS  PubMed  Google Scholar 

  12. Ur Rahman U, Sahar A, Pasha I, ur Rahman S, Ishaq A (2018) Assessing the capability of Fourier transform infrared spectroscopy in tandem with chemometric analysis for predicting poultry meat spoilage. PeerJ 6:e5376

    Google Scholar 

  13. Gangidi RR, Proctor A (2009) Meat and Meat Products. In: Sun D-W (ed) Infrared spectroscopy for food quality analysis and control, 1st edn. Academic Press, New York, pp 179–214

    Google Scholar 

  14. Li-Chan ECY, Ismail AA, Sedman J, van de Voort FD (2002) Vibrational spectroscopy of food and food products. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy: Applications of Vibrational Spectroscopy in Life, Pharmaceutical and Natural Sciences, 1st edn. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  15. Rohman A (2019) The employment of Fourier transform infrared spectroscopy coupled with chemometrics techniques for traceability and authentication of meat and meat products. J Adv Vet Anim Res 6(1):9–17

    PubMed  Google Scholar 

  16. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fulwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bureau S, Cozzolino D, Clark CJ (2019) Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: a review. Postharvest Biol Technol 148:1–14

    CAS  Google Scholar 

  18. Kosa G, Shapaval V, Kohler A, Zimmermann B (2017) FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Factories 16:195

    Google Scholar 

  19. Naumann D, Fabian H, Lasch P (2009) FTIR spectroscopy of cells, tissues and body fluids. In: Barth A, Haris PI (eds) Biological and Biomedical Infrared Spectroscopy, 1st edn. IOS Press, Amsterdam

    Google Scholar 

  20. Severcan F, Akkas SB, Turker S, Yucel R (2012) Methodological approaches from experimental to computational analysis in vibrational spectroscopy and microspectroscopy. In: Severcan F, Haris PI (eds) Vibrational Spectroscopy in Diagnosis and Screening, 1st edn. IOS Press, Amsterdam

    Google Scholar 

  21. Deniz E, Güneş Altuntaş E, Ayhan B, İğci N, Özel Demiralp D, Candoğan K (2018) Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J Food Process Preserv 42(10):e13767

    Google Scholar 

  22. Rahmania H, Sudjadi, Rohman A (2015) The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Sci 100:301–305

    CAS  PubMed  Google Scholar 

  23. Rohman A, Erwanto Y, Man YBC (2011) Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci 88(1):91–95

    CAS  PubMed  Google Scholar 

  24. Xu L, Cai CB, Cui HF, Ye ZH, Yu XP (2012) Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Sci 92(4):506–510

    CAS  PubMed  Google Scholar 

  25. Zhao M, Downey G, O’Donnell CP (2014) Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Sci 96(2):1003–1011

    CAS  PubMed  Google Scholar 

  26. Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl Environ Microbiol 68(6):2822–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahar A, Dufour E (2014) Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets. LWT-Food Sci and Technol 56:315–320

    CAS  Google Scholar 

  28. Saraiva C, Vasconcelos H, Almeida JMMM (2017) A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored undermodified atmospheres. Int J Food Microbiol 241:331–339

    CAS  PubMed  Google Scholar 

  29. Zajac A, Dyminska L, Lorenc J, Hanuza J (2017) Fourier transform infrared and Raman spectroscopy studies of the time-dependent changes in chicken meat as a tool for recording spoilage processes. Food Anal Methods 10:640–648

    Google Scholar 

  30. Guillén MD, Cabo N (2004) Study of the effects of smoke flavourings on the oxidative stability of the lipids of pork adipose tissue by means of Fourier transform infrared spectroscopy. Meat Sci 66:647–657

    PubMed  Google Scholar 

  31. Hu X, Toyoda K, Yamanoue M, Ihara I, Nakai K (2010) Evaluation of fatty acid profile of Wagyu beef by ATR-FTIR spectroscopy. Food Bioprocess Technol 3:883–891

    CAS  Google Scholar 

  32. Larrea-Wachtendorff D, Tabilo-Munizaga G, Moreno-Osorio L, Villalobos-Carvajal R, Pérez-Won M (2015) protein changes caused by high hydrostatic pressure (HHP): a study using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Food Eng Rev 7:222–230

    CAS  Google Scholar 

  33. Lucarini M, Durazzo A, Sánchez del Pulgar J, Gabrielli P, Lombardi-Boccia G (2018) Determination of fatty acid content in meat and meat products: the FTIR-ATR approach. Food Chem 267:223–230

    CAS  PubMed  Google Scholar 

  34. Ma G, Chen H, Zhang Q, Ma J, Yu Q, Han L, Chen C, Song R (2019) Protective characterization of low dose sodium nitrite on yak meat myoglobin in a hydroxy radical oxidation environment: Fourier Transform Infrared spectroscopy and laser Micro-Raman spectroscopy. LWT-Food Sci and Technol 116:108556

    CAS  Google Scholar 

  35. Perisic N, Afseth NK, Ofstad R, Narum B, Kohler A (2013) Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis. Meat Sci 95:576–585

    CAS  PubMed  Google Scholar 

  36. Rodriguez-Sanoa LE, Allendorf ME (2011) Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol 2:467–483

    Google Scholar 

  37. Subramanian A, Rodriguez-Saona L (2009) Fourier transform infrared (FTIR) spectroscopy. In: Sun D-W (ed) Infrared spectroscopy for food quality analysis and control, 1st edn. Academic Press, New York, pp 145–178

    Google Scholar 

  38. Griffiths PR (2010) Editorial: FTIR vs. FT-IR vs. mid-IR. Appl Spectrosc 64(2):40A

  39. Munjanja BK, Gowera ATD (2017) Dairy products. In: Franca AS, Nollet LML (eds) Spectroscopic methods in food analysis, 1st edn Chapter 21. CRC Press, New York

  40. Stuart B (1997) Biological applications of infrared spectroscopy, 1st edn John Wiley & Sons (on behalf of University of Greenwich), Chicester

    Google Scholar 

  41. Cozzolino D (2017) Fourier transform spectroscopy. In: Franca AS, Nollet LML (eds) Spectroscopic methods in food analysis, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  42. Rohman A, Salamah N (2018) The employment of spectroscopic techniques coupled with chemometrics for authentication analysis of Halal pharmaceuticals. J Appl Pharm Sci 8(10):63–68

    CAS  Google Scholar 

  43. Sherman Hsu C-P (1997) Infrared spectroscopy. In: Settle FA (ed) Handbook of Instrumental Techniques for Analytical Chemistry, 1st edn. Prentice Hall, New Jersey

    Google Scholar 

  44. Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179

    CAS  Google Scholar 

  45. Naumann D (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev 36(2–3):239–298

    CAS  Google Scholar 

  46. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137(14):3202–3215

    CAS  PubMed  Google Scholar 

  47. Baker MJ, Gazi E, Brown MD, Shanks JH, Gardner P, Clarke NW (2008) FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. Br J Cancer 99(11):1859–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. Biospectroscopy 5(4):219–227

    CAS  PubMed  Google Scholar 

  49. Özel Demiralp FD, İğci N, Peker S, Ayhan B (2014) Temel Proteomik Stratejiler, 1st edn. Ankara Üniversitesi Yayınevi, Ankara

    Google Scholar 

  50. Bacsik Z, Mink J, Keresztury G (2004) FTIR spectroscopy of the atmosphere. I. Principles and methods. Appl Spectrosc Rev 39(3):295–363

    CAS  Google Scholar 

  51. Kurniawati E, Rohman A, Triyana K (2014) Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Sci 96(1):94–98

    CAS  PubMed  Google Scholar 

  52. Pebriana RB, Rohman A, Lukitaningsih E, Sudjadi (2017) Development of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in beef sausage employing three lipid extraction systems. Int J Food Prop 20(S2):S1995–S2005

  53. Yang L, Wu T, Liu Y, Zou J, Huang Y, Babu VS, Lin L (2018) Rapid identification of pork adulterated in the beef and mutton by infrared spectroscopy. J Spectrosc 2413874:1–10

    Google Scholar 

  54. Blando JD, Porcja RJ, Turpin BJ (2001) Issues in the quantitation of functional groups by FTIR spectroscopic analysis of impactor-collected aerosol samples. Aerosol Sci Technol 35(5):899–908

    CAS  Google Scholar 

  55. DeNoyer LK, Dodd JG (2002) Smoothing and derivatives in spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy Volume 1: Theory and Instrumentation, 1st edn. John Wiley & Sons, Chicester

    Google Scholar 

  56. Adigüzel Y, Haris PI, Severcan F (2012) Screening of proteins in cells and tissues by vibrational spectroscopy. In: Severcan F, Haris PI (eds) Vibrational Spectroscopy in Diagnosis and Screening, 1st edn. IOS Press, Amsterdam

    Google Scholar 

  57. Lee L-C, Liong C-Y, Osman K, Jemain AA (2016) Effects of scatter-correction pre-processing methods and spectral derivative algorithms on forensic classification of paper. AIP Conf Proc 1750(060013):1–9

    Google Scholar 

  58. Chalmers JM (2002) Mid-infrared spectroscopy: anomalies, artifacts and common errors. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy: Sample Characterization and Spectral Data Processing, 1st edn. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  59. Fengou LC, Spyrelli E, Lianou A, Tsakanikas P, Panagou EZ, Nychas GJE (2019a) Estimation of minced pork microbiological spoilage through Fourier transform infrared and visible spectroscopy and multispectral vision technology. Foods 8(7):238

    CAS  PubMed Central  Google Scholar 

  60. Fengou LC, Lianou A, Tsakanikas P, Gkana EN, Panagou EZ, Nychas GJE (2019b) Evaluation of Fourier transform infrared spectroscopy and multispectral imaging as means of estimating the microbiological spoilage of farmed sea bream. Food Microbiol 79:27–34

    CAS  PubMed  Google Scholar 

  61. Igci N, Sharafi P, Demiralp DO, Demiralp CO, Yuce A, Dokmeci S (2017) Application of Fourier transform infrared spectroscopy to biomolecular profiling of cultured fibroblast cells from Gaucher disease patients: a preliminary investigation. Adv Clin Exp Med 26(7):1053–1061

    PubMed  Google Scholar 

  62. Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767:1073–1101

    CAS  PubMed  Google Scholar 

  63. Costantino HR, Chen B, Griebenow K, Hsu CC, Shire SJ (1998) Fourier-transform infrared spectroscopic investigation of the secondary structure of aqueous and dried recombinant human deoxyribonuclease I. Pharm Pharmacol Commun 4(8):391–395

    CAS  Google Scholar 

  64. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym 7(1–4):207–221

    CAS  Google Scholar 

  65. Nabedryk E, Garavito RM, Breton J (1988) The orientation of beta-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation. Biophys J 53(5):671–676

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Usoltsev D, Sitnikova V, Kajava A, Uspenskaya M (2019) Systematic FTIR Spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules 9(8):359

    CAS  PubMed Central  Google Scholar 

  67. Bozdag G, Igci N, Calis P, Ayhan B, Ozel Demiralp D, Mumusoglu S, Yarali H (2019) Examination of cervical swabs of patients with endometriosis using Fourier transform infrared spectroscopy. Arch Gynecol Obstet 299(5):1501–1508

    CAS  PubMed  Google Scholar 

  68. Haaland DM, Jones HDT, Thomas EV (1997) Multivariate classification of the infrared spectra of cell and tissue samples. Appl Spectrosc 51(3):340–345

    CAS  Google Scholar 

  69. Sikorska E, Khmelinskii I, Sikorski M (2014) Vibrational and electronic spectroscopy and chemometrics in analysis of edible oils. In: Cruz RMS, Khmelinskii I, Vieira M (eds) Methods in Food Analysis, 1st edn. CRC Press, New York

    Google Scholar 

  70. Wang L, Mizaikoff B (2008) Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal Bioanal Chem 391:1641–1654

    CAS  PubMed  Google Scholar 

  71. Custers D, Cauwenbergh T, Bothy JL, Courselle P, De Beer JO, Apers S, Deconinck E (2015) ATR-FTIR spectroscopy and chemometrics: an interesting tool to discriminate and characterize counterfeit medicines. J Pharm Biomed Anal 112:181–189

    CAS  PubMed  Google Scholar 

  72. Krafft C, Popp J (2012) Diagnosis and screening of cancer tissues by vibrational spectroscopy. In: Severcan F, Haris PI (eds) Vibrational Spectroscopy in Diagnosis and Screening, 1st edn. IOS Press, Amsterdam

    Google Scholar 

  73. Severcan F, Bozkurt O, Gurbanov R, Gorgulu G (2010) FT-IR spectroscopy in diagnosis of diabetes in rat animal model. J Biophotonics 3(8–9):621–631

    CAS  PubMed  Google Scholar 

  74. Biancolillo A, Marini F (2018) Chemometric Methods for spectroscopy-based pharmaceutical analysis. Front Chem 6:576

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stumpe B, Engel T, Steinweg B, Marschner B (2012) Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin. Environ Sci Technol 46(7):3964–3972

    CAS  PubMed  Google Scholar 

  76. Udelhoven T, Naumann D, Schmitt J (2000) Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl Spectrosc 54(10):1471–1479

    CAS  Google Scholar 

  77. Li Z, Zhang X, Mohua GA, Karanassios V (2017) Artificial neural networks (ANNs) for spectral interference correction using a large-size spectrometer and ANN-based deep learning for a miniature one. In: El-Shahat A (ed) Advanced Applications for Artificial Neural Networks, 1st edn. IntechOpen, London

    Google Scholar 

  78. Lasch P, Stämmler M, Zhang M, Baranska M, Bosch A, Majzner K (2018) FT-IR hyperspectral imaging and artificial neural network analysis for rapid identification of pathogenic bacteria. Anal Chem 90(15):8896–8904

    CAS  PubMed  Google Scholar 

  79. Tao Y, Hsu K, Ihler A, Gao X, Sorooshian S (2018) A two-stage deep neural network framework for precipitation estimation from bispectral satellite information. J Hydrometeorol 19:393–408

    Google Scholar 

  80. Bassbasi M, Platikanov S, Tauler R, Oussama A (2014) FTIR-ATR determination of solid non fat (SNF) in raw milk using PLS and SVM chemometric methods. Food Chem 146:250–254

    CAS  PubMed  Google Scholar 

  81. Bona M, Marquetti I, Link JV, Makimori GYF, da Costa AV, Lemes ALG, Ferreira JMG, dos Santos Scholz MB, Valderrama P, Poppi RJ (2017) Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT-Food Sci Technol 76(B):330–336

    CAS  Google Scholar 

  82. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    CAS  Google Scholar 

  83. Alamprese C, Casale M, Sinelli N, Lanteri S, Casiraghi E (2013) Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci Technol 53(1):225–232

    CAS  Google Scholar 

  84. Kuswandi B, Putri FK, Gani AA, Ahmad M (2015) Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys. J Food Sci Technol 52(12):7655–7668

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grunert T, Stephan R, Ehling-Schulz M, Johler S (2016) Fourier transform infrared spectroscopy enables rapid differentiation of fresh and frozen/thawed chicken. Food Control 60:361–364

    CAS  Google Scholar 

  86. Nunes KM, Andrade MVO, Santos Filho AMP, Lasmar MC, Sena MM (2016) Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chem 205:14–22

    CAS  PubMed  Google Scholar 

  87. Huang H, Grün IU, Ellersieck M, Clarke AD (2017) Measurement of total sodium alginate in restructured fish products using Fourier transform infrared spectroscopy. EC Nutrition 11(1):33–45

    Google Scholar 

  88. Guntarti A, Ahda M, Kusbandari A, Sauri AS (2018) Fourier-transform infrared spectroscopy combined with chemometrics for detection of pork in beef meatball formulation. Int J Green Pharm 12(3):153–157

    CAS  Google Scholar 

  89. Rahayu WS, Martono S, Sudjadi S, Rohman A (2018) The potential use of infrared spectroscopy and multivariate analysis for differentiation of beef meatball from dog meat for Halal authentication analysis. J Adv Vet Anim Res 5(3):307–314

    Google Scholar 

  90. Moreira MJP, Silva AC, Almeida JMMM, Saraiva C (2018) Characterization of deterioration of fallow deer and goat meat using microbial and mid infrared spectroscopy in tandem with chemometrics. Food Packag Shelf Life 15:169–180

    Google Scholar 

  91. Keshavarzi Z, Banadkoki SB, Faizi M, Zolghadri Y, Shirazi FH (2019) Identification and quantification of texture soy protein in a mixture with beef meat using ATR-FTIR spectroscopy in combination with chemometric methods. Iran J Pharm Res 18(Special Issue):190–197

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Keshavarzi Z, Banadkoki SB, Faizi M, Zolghadri Y, Shirazi FH (2020) Comparison of transmission FTIR and ATR spectra for discrimination between beef and chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR combined with chemometrics. J Food Sci Technol 57(4):1430–1438

    CAS  PubMed  Google Scholar 

  93. Deniz E, Güneş Altuntaş E, İğci N, Ayhan B, Özel Demiralp D, Candoğan K (2020) Detection of pork, horse or donkey meat adulteration in beef-based formulations by Fourier transform infrared spectroscopy. Gıda 45(2):369–379

    Google Scholar 

  94. Argyri AA, Jarvis RM, Wedge D, Xub Y, Panagou EZ, Goodacre R, Nychas GJE (2013) A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 29:461–470

    CAS  Google Scholar 

  95. Grewal MK, Jaiswal P, Jha SN (2015) Detection of poultry meat specific bacteria using FTIR spectroscopy and chemometrics. J Food Sci Technol 52(6):3859–3869

    CAS  PubMed  Google Scholar 

  96. Pavli F, Argyri AA, Nychas GJE, Tasou C, Chorianopoulos N (2018) Use of Fourier transform infrared spectroscopy for monitoring the shelf life of ham slices packed with probiotic supplemented edible films after treatment with high pressure processing. Food Res Int 106:1061–1068

    CAS  PubMed  Google Scholar 

  97. Wang Y-Y, Li J-Q, Liu H-G, Wang Y-Z (2019) Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species. Molecules 24(12):2210

    CAS  PubMed Central  Google Scholar 

  98. Federal Register (2009) Volume 74, Issue 64: 15497-15499, April 6

  99. Spink J (2016) Food fraud prevention. The International Union of Food Science and Technology (IUFoST) Scientific Information Bulletin (SIB) November 2016:1–12

  100. Spink J, Bedard B, Keogh J, Moyer DC, Scimeca J, Vasan A (2019) International survey of food fraud and related terminology: Preliminary results and discussion. J Food Sci 84(10):2705–2718

    CAS  PubMed  Google Scholar 

  101. Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I (2019) Review of recent DNA-based methods for main food-authentication topics. J Agric Food Chem 67(14):3854–3864

    PubMed  Google Scholar 

  102. Cavin C, Cottenet G, Cooper KM, Zbinden P (2018) Meat vulnerabilities to economic food adulteration require new analytical solutions. CHIMIA Int J Chem (Arau) 72(10):697–703

    CAS  Google Scholar 

  103. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A (2019) The employment of q-PCR using specific primer targeting on mitochondrial cytochrome-b gene for identification of wild boar meat in meatball samples. J Adv Vet Anim Res 6(3):300–307

    PubMed  PubMed Central  Google Scholar 

  104. Barakat H, El-Garhy HAS, Moustafa MMA (2014) Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes. Appl Microbiol Biotechnol 98(23):9805–9816

    CAS  PubMed  Google Scholar 

  105. Tomaiuolo M, Chiaravalle AE, Mangiacotti M, Petrella A, Di Taranto A, Iammarino M (2019) Innovative techniques for identifying a mechanically separated meat: sample irradiation coupled to electronic spin resonance. Eur Food Res Technol 245:2331–2341

    CAS  Google Scholar 

  106. Deniz E, Güneş Altuntaş E, Ayhan B, Özel Demiralp D, Candoğan K (2017) Identification of mechanically deboned meat adulteration by FTIR spectroscopy in chicken and turkey meat formulations in terms of meat components structure. 2nd Congress on Food Structure and Design. 26-28 October, Antalya. Turkey

  107. Nunes KM, Andrade MVO, Almeida MR, Sena MM (2020) A soft discriminant model based on mid-infrared spectra of bovine meat purges to detect economic motivated adulteration by the addition of non-meat ingredients. Food Anal Methods 13:1699–1709. https://doi.org/10.1007/s12161-020-01795-3

    Article  Google Scholar 

  108. Brewer MS (2012) Reducing the fat content in ground beef without sacrificing quality: a review. Meat Sci 91:385–395

    CAS  PubMed  Google Scholar 

  109. Górska-Horczyczak E, Horczyczak M, Guzek D, Wojtasik-Kalinowska I, Wierzbicka A (2017) Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork. Food Control 73:237–244

    Google Scholar 

  110. Alamprese C, Casiraghi E (2015) Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT-Food Sci Technol 63(2015):720–725

    CAS  Google Scholar 

  111. Estévez M (2011) Protein carbonyls in meat systems: a review. Meat Sci 89:259–279

    PubMed  Google Scholar 

  112. Guyon C, Meynier A, de Lamballerie M (2016) Protein and lipid oxidation in meat: a review with emphasis on high pressure treatments. Trends Food Sci Technol 50:131–143

    CAS  Google Scholar 

  113. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78:343–358

    CAS  PubMed  Google Scholar 

  114. Han Z, Zhang J, Zheng J, Li X, Shao JH (2019) The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy. Food Chem 280:263–269

    CAS  PubMed  Google Scholar 

  115. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    CAS  PubMed  Google Scholar 

  116. Sazonova S, Grube M, Shvirksts K, Galoburda R, Gramatina I (2019) FTIR spectroscopy studies of high pressure-induced changes in pork macromolecular structure. J Mol Struct 1186:377–383

    CAS  Google Scholar 

  117. Zhang C, Li X, Wang H, Xia X, Kong B (2020) Ultrasound-assisted immersion freezing reduces the structure and gel property deterioration of myofibrillar protein from chicken breast. Ultrason Sonochem 67:105–137

    Google Scholar 

  118. Ansorena D, Astiasarán I (2008) Ingredients: meat, fat, and salt. In: Nollet LML, Toldra F (eds) Handbook of Processed Meats and Poultry Analysis, 1st edn. CRC Press, New York

    Google Scholar 

  119. Flåtten A, Bryhni EA, Kohler A, Egelandsdal B, Isaksson T (2005) Determination of C22:5 and C22:6 marine fatty acids in pork fat with Fourier transform mid-infrared spectroscopy. Meat Sci 69:433–440

    PubMed  Google Scholar 

  120. Guillén MD, Cabo N (2000) Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J Sci Food Agric 80:2028–2036

    Google Scholar 

  121. Argyri AA, Mallouchos AC, Panagou EZ, Nychas GJE (2015) The dynamics of the HS/SPME–GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions. Int J Food Microbiol 193:51–58

    CAS  PubMed  Google Scholar 

  122. Huang L, Zhao J, Chen Q, Zhang Y (2014) Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem 145:228–236

    CAS  PubMed  Google Scholar 

  123. Wang H, Cai L, Li Y, Xu X, Zhou G (2018) Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 91:397–403

    CAS  Google Scholar 

  124. Lianou A, Panagou EZ, Nychas GJE (2017) Meat safety-I foodborne pathogens and other biological issues. In: Toldrá F (ed) Lawrie´s Meat Science, 8th edn. Woodhead Publishing Series in Food Science, Technology and Nutrition, pp 521–552

    Google Scholar 

  125. Sofos JN (2014) Meat and meat products. In: Motarjemi, J, Lelieverd, H (eds) Food Safety Management, A Practical Guide for the Food Industry. 1st edn Chapter 6. pp. 119-162. Academic Press

  126. Davis R, Mauer LJ (2010) Fourier tansform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. In: Méndez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1st edn. Formatex Research Center, Badajoz

    Google Scholar 

  127. Fisher JF, Mobashery S (2020) Constructing and deconstructing the bacterial cell wall. Protein Sci 29:629–646

    CAS  PubMed  Google Scholar 

  128. Mauer LJ, Reuhs BL (2008) Mid-Infrared sensors for the rapid analysis of select microbial food borne pathogens. In: Voeller JG (ed) Wiley Handbook of Science and Technology for Homeland Security, 1st edn. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  129. Caveney NA, Li FKK, Strynadka NCJ (2018) Enzyme structures of the bacterial peptidoglycan andwall teichoic acid biogenesis pathways. Curr Opin Struct Biol 53:45–58

    CAS  PubMed  Google Scholar 

  130. Novais A, Freitas AR, Rodrigues C, Peixe L (2019) Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 38:427–448

    PubMed  Google Scholar 

  131. Campos J, Sousa C, Mourão J, Lopes J, Antunes P, Peixe L (2018) Discrimination of non-typhoid Salmonella serogroups and serotypes by Fourier transform infrared spectroscopy: a comprehensive analysis. Int J Food Microbiol 285:34–41

    CAS  PubMed  Google Scholar 

  132. Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137:69–79

    CAS  PubMed  Google Scholar 

  133. Sousa C, Novais Â, Magalhães A, Lopes J, Peixe L (2013) Diverse high-risk B2 and D Escherichia coli clones depicted by Fourier transform infrared spectroscopy. Sci Rep 3:3278

    PubMed  PubMed Central  Google Scholar 

  134. Amamcharla JK, Panigrahi S, Logue CM, Marchello M, Sherwood JS (2010) Fourier transform infrared spectroscopy (FTIR) as a tool for discriminating Salmonella typhimurium contaminated beef. Sens & Instrumen Food Qual 4:1–12

    Google Scholar 

  135. Bang J, Hong A, Kim H, Beuchat LR, Rhee MS, Kim Y, Ryu JH (2014) Inactivation of Escherichia coli O157: H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Int J Microbiol 191:129–134

    CAS  Google Scholar 

  136. Díez-García M, Capita R, Alonso-Calleja C (2012) Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiol 31:173–180

    PubMed  Google Scholar 

  137. Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Google Scholar 

  138. Wang H, Ding S, Wang G, Xu X, Zhou G (2013) In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int J Food Microbiol 167(3):293–302

    CAS  PubMed  Google Scholar 

  139. Orhan-Yanikan E, Gulseren G, Ayhan K (2020) Protein profile of bacterial extracellular polymeric substance by Fourier transform infrared spectroscopy. Microchem J 156. https://doi.org/10.1016/j.microc.2020.104831

  140. Ariafar MN, Iğci N, Akçelik M, Akcelik N (2019) Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch Microbiol 201:1233–1248

    CAS  PubMed  Google Scholar 

  141. Wang H, Qi J, Dong Y, Li Y, Xu X, Zhou G (2017) Characterization of attachment and biofilm formation by meat-borne Enterobacteriaceae strains associated with spoilage. LWT 86:399–407

    CAS  Google Scholar 

  142. McDonald K, Sun DW (1999) Predictive food microbiology for the meat industry: a review. Int J Food Microbiol 52(1–2):1–27

    CAS  PubMed  Google Scholar 

  143. He HJ, Sun DW (2015) Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence spectroscopy. Trends Food Sci Technol 46:199–210

    CAS  Google Scholar 

  144. Wickramasinghe NN, Ravensdale J, Coorey R, Chandry SP, Dykes GA (2019) The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat. Compr Rev Food Sci Food Saf 18:1622–1635

    CAS  PubMed  Google Scholar 

  145. Hameed S, Xie L, Ying Y (2018) Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci Technol 81:61–73

    CAS  Google Scholar 

  146. Aït-Kaddour A, Loudiyi M, Ferlay A, Gruffat D (2018) Performance of fluorescence spectroscopy for beef meat authentication: effect of excitation mode and discriminant algorithms. Meat Sci 137:58–66

    PubMed  Google Scholar 

  147. Sowoidnich K, Schmidt H, Kronfeldta HD, Schwagelec F (2012) A portable 671 nm Raman sensor system for rapid meat spoilage identification. Vib Spectrosc 62:70–76

    CAS  Google Scholar 

  148. Kodogiannis VS, Pachidis T, Kontogianni E (2014) An intelligent based decision support system for the detection of meat spoilage. Eng Appl Artif Intell 34:23–36

    Google Scholar 

  149. Ellis DI, Broadhurst D, Goodacre R (2004) Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Anal Chim Acta 514:193–201

    CAS  Google Scholar 

  150. Kodogiannis VS, Alshejari A (2014) An adaptive neuro-fuzzy identification model for the detection of meat spoilage. Appl Soft Comput 23:483–497

    Google Scholar 

  151. Pavli FG, Argyri AA, Chorianopoulos NG, Nychas GJE, Tassou CC (2020) Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry fermented sausages. LWT Food Sci Technol 118:108810

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Scientific and Technological Research Council of Turkey (TÜBİTAK) with Project # 214O182.

Funding

This review is funded by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Project # 214O182

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezban Candoğan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candoğan, K., Altuntas, E.G. & İğci, N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng Rev 13, 66–91 (2021). https://doi.org/10.1007/s12393-020-09251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09251-y

Keywords

Navigation