Skip to main content
Log in

Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An ATR-MIR-FTIR spectrometer was integrated into a laboratory scale anaerobic digestion setup. Automatically, a sludge sample from the digester was transferred to a measurement cell; an IR spectrum was recorded and evaluated by chemometric models to estimate the concentration of the individual volatile fatty acids (VFA). The calibration set included semi-artificial samples spiked with known concentrations of the VFA as well as original samples from a continuous fermentation. High-performance liquid chromatography (HPLC) was used as a reference analysis of the samples. The models were optimized for a low root mean square error of prediction (RMSEP). R 2 for acetic acid, propionic acid, isobutyric acid, butyric acid, valeric acid, and isovaleric acid were 0.94, 0.88, 0.83, 0.75, 0.59, and 0.90, respectively. The accuracy of the models was validated in a second experiment. Considering the complex and heterogeneous sludge composition and the chemical similarity of VFA, absolute concentration and dynamic (increasing and decreasing concentration of VFA) was predicted well for acetic, propionic, isobutyric, and isovaleric acid (in their respective concentration range); Butyric acid could not be detected. The installed setup was able to gather and measure native samples from the digester (every 2 h) automatically over a period of 6 months without problems of clogging or biofouling. The instant and continuous analysis of the concentration of the VFA made it possible to evaluate the current bioprocess status and adjust the organic loading rate accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflectance

CSTR:

Continuous stirred-tank reactor

FTIR:

Fourier transform infrared

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

HRT:

Hydraulic retention time

MIR:

Mid-infrared

NIR:

Near infrared

OLR:

Organic loading rate

PLS:

Partial least squares

RMSEP:

Root mean square error of prediction

VFA:

Volatile fatty acids

VS:

Volatile solids

References

  1. Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43:559–565

    Article  CAS  Google Scholar 

  2. Boe K, Batstone DJ, Steyer J-P, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980

    Article  CAS  Google Scholar 

  3. Pind PF, Angelidaki I, Ahring BK (2003) Dynamics of the anaerobic process: effects of volatile fatty acids. Biotechnol Bioeng 82:791–801

    Article  CAS  Google Scholar 

  4. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Switzenbaum M, Giraldo-Gomez E, Hickey R (1990) Monitoring of the anaerobic methane fermentation process. Enzyme Microb Tech 12:722–730

    Article  CAS  Google Scholar 

  6. Angelidaki I, Petersen S, Ahring B (1990) Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33:469–472

    Article  CAS  Google Scholar 

  7. Cruwys JA, Dinsdale RM, Hawkes FR, Hawkes DL (2002) Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J Chromatogr A 945:195–209

    Article  CAS  Google Scholar 

  8. Canale A, Valente M, Ciotti A (2006) Determination of volatile carboxylic acids (C1-C5i) and lactic acid in aqueous acid extracts of silage by high performance liquid chromatography. J Sci Food Agric 35:1178–1182

    Article  Google Scholar 

  9. Lahav O, Morgan B, Loewenthal R (2002) Rapid, simple, and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ Sci Technol 36:2736–2741

    Article  CAS  Google Scholar 

  10. Pind PF, Angelidaki I, Ahring BK (2003) A new VFA sensor technique for anaerobic reactor systems. Biotechnol Bioeng 82:54–61

    Article  CAS  Google Scholar 

  11. Boe K, Batstone DJ, Angelidaki I (2007) An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96:712–721

    Article  CAS  Google Scholar 

  12. Slater W, Merigh M, Ricker N, Labib F, Ferguson J, Benjamin MA (1990) Microcomputer-based instrumentation system for anaerobic wastewater-treatment processes. Water Res 24:121–123

    Article  CAS  Google Scholar 

  13. Zumbusch P, Meyer-Jens T, Brunner G, Märkl H (1994) On-line monitoring of organic substances with high-pressure liquid chromatography (HPLC) during the anaerobic fermentation of waste-water. Appl Microbiol Biotechnol 42:140–146

    Article  CAS  Google Scholar 

  14. Roychoudhury P, Harvey LM, McNeil B (2006) The potential of mid infrared spectroscopy (MIRS) for real time bioprocess monitoring. Anal Chim Acta 571:159–166

    Article  CAS  Google Scholar 

  15. Holm-Nielsen JB, Lomborg CJ, Oleskowicz-Popiel P, Esbensen KH (2008) On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes: evaluation of process analytical technologies. Biotechnol Bioeng 99:302–313

    Article  CAS  Google Scholar 

  16. Wolf D, von Canstein H, Schröder C (2011) Optimisation of biogas production by infrared spectroscopy-based process control. J Nat Gas Sci Eng 3:625–632

    Article  CAS  Google Scholar 

  17. Zhang M-L, Sheng G-P, Mu Y, Li W-H, Yu H-Q, Harada H, Li Y–Y (2009) Rapid and accurate determination of VFAs and ethanol in the effluent of an anaerobic H2-producing bioreactor using near-infrared spectroscopy. Water Res 43:1823–1830

    Article  CAS  Google Scholar 

  18. Spanjers H, Bouvier JC, Steenweg P, Bisschops I, van Gils W, Versprille B (2006) Implementation of in-line infrared monitor in full-scale anaerobic digestion process. Water Sci Technol 53:55–61

    Article  CAS  Google Scholar 

  19. Steyer J, Bouvier J, Conte T, Gras P, Harmand J, Delgenes J (2002) On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion processes using infra-red spectrometry. Water Sci Technol 45:133–138

    CAS  Google Scholar 

  20. Grube M, Lin J, Lee P, Kokorevicha S (2006) Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130:324–333

    Article  CAS  Google Scholar 

  21. Smidt E, Eckhardt K-U, Lechner P, Schulten H-R, Leinweber P (2005) Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodegradation 16:67–79

    Article  CAS  Google Scholar 

  22. Liu J, Olsson G, Mattiasson BA (2004) Volumetric meter for monitoring of low gas flow rate from laboratory-scale biogas reactors. Sens Actuators B 97:369–372

    Article  CAS  Google Scholar 

  23. Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol 100:6339–6346

    Article  CAS  Google Scholar 

  24. Martens H, Næs T (1991) Multivariate calibration. Wiley, New York

    Google Scholar 

  25. Udén P, Sjaunja L (2009) Estimating volatile fatty acid concentrations in rumen samples by Fourier transform mid-IR transmission spectroscopy. Anim Feed Sci Technol 152:123–132

    Article  Google Scholar 

  26. Smidt E, Meissl K (2007) The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manage 27:268–276

    Article  CAS  Google Scholar 

  27. Kondepati VR, Heise HM (2008) The potential of mid– and near–infrared spectroscopy for reliable monitoring of bioprocesses. Curr Trends Biotechnol Pharm 2:117–132

    CAS  Google Scholar 

  28. Barredo MS, Evison LM (1991) Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57:1764–1769

    CAS  Google Scholar 

  29. Boe K, Steyer J-P, Angelidaki I (2008) Monitoring and control of the biogas process based on propionate concentration using online VFA measurement. Water Sci Technol 57:661–666

    Article  CAS  Google Scholar 

  30. Dhaked R, Waghmare C, Alam S, Kamboj D, Singh L (2003) Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature. Bioresour Technol 87:299–303

    Article  CAS  Google Scholar 

  31. Pullammanappallil PC, Chynoweth DP, Lyberatos G, Svoronos SA (2001) Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresour Technol 78:165–169

    Article  CAS  Google Scholar 

  32. Mechichi T, Sayadi S (2005) Evaluating process imbalance of anaerobic digestion of olive mill wastewaters. Process Biochem 40:139–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Albert Gessner, Marcus Behringer, and Willi Bauer from the Department of Biotechnology, University of Würzburg, Germany for the support with the design of the technical setup. The Zentrales Innovationsprogramm Mittelstand of the Bundesministerium für Wirtschaft und Technologie, and the EXIST-Gründerstipendium of the European Union provided funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Benz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falk, H.M., Reichling, P., Andersen, C. et al. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy . Bioprocess Biosyst Eng 38, 237–249 (2015). https://doi.org/10.1007/s00449-014-1263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1263-9

Keywords

Navigation