Skip to main content

Advertisement

Log in

Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study is to compare alternative treatments on solvent-free extraction of high added value components from fermented grape pomace. Ultrasounds (US), pulsed electric fields (PEF) and high voltage electric discharges (HVED), which are physical treatments able to induce cell damages, were applied on aqueous suspensions of grape pomace. The efficiency of these technologies for phenolic compounds extraction, and particularly for anthocyanins recovery, was evaluated throughout the treatments at equivalent cell disintegration indexes (Z). HVED proved to be the most interesting technique to achieve higher phenolic compounds recovery with lower energy requirement than PEF and US at the same values of Z. However, HVED was less selective than PEF and US regarding the amount of anthocyanins recovered. At equivalent cell disintegration of Z = 0.8, PEF remarkably increased the extraction yield of total anthocyanins up to 22 and 55 % in comparison with US and HVED-assisted extractions. At this Z value, the ratio of total anthocyanins to TPC extracted reaches the respective values of 41.7, 34.9 and 14.1 % for PEF, US and HVED, thus demonstrating interesting differences of selectivity of the treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67–76.

    Article  CAS  Google Scholar 

  • Balachandran, S., Kentish, S. E., Mawson, R., & Ashokkumar, M. (2006). Ultrasonic enhancement of the supercritical extraction from ginger. Ultrasonics Sonochemistry, 13(6), 471–479.

    Article  CAS  Google Scholar 

  • Barba, F. J., Esteve, M. J., Tedeschi, P., Brandolini, V., & Frígola, A. (2013). A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Analytical Methods, 6(1), 317–327.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., Pothakamury, U. R., Gongora-Nieto, M. M., & Swanson, B. G. (1999). Preservation of foods with pulsed electric fields. San Diego: Academic.

    Google Scholar 

  • Boussetta, N. (2011). Intensification de l'extraction des polyphénols par électrotechnologies pour la valorisation des marcs de Champagne. Université de Technologie de Compiègne.

  • Boussetta, N., & Vorobiev, E. (2014). Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. Comptes Rendus Chimie.

  • Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C., & Lanoiselle, J.-L. (2009). Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. Journal of Agricultural and Food Chemistry, 57(4), 1491–1497.

    Article  CAS  Google Scholar 

  • Boussetta, N., Reess, T., Vorobiev, E., & Lanoisellé, J.-L. (2011a). Pulsed electrical discharges: Principles and application to extraction of biocompounds.

  • Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J. L. (2011b). Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chemistry, 128(2), 364–370.

    Article  CAS  Google Scholar 

  • Boussetta, N., Vorobiev, E., Le, L. H., Cordin-Falcimaigne, A., & Lanoisellé, J. L. (2012a). Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT - Food Science and Technology, 46(1), 127–134.

    Article  CAS  Google Scholar 

  • Boussetta, N., Vorobiev, E., Reess, T., De Ferron, A., Pecastaing, L., Ruscassié, R., & Lanoisellé, J. L. (2012b). Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: effect of the dynamic shock waves. Innovative Food Science & Emerging Technologies, 16, 129–136.

    Article  CAS  Google Scholar 

  • Boussetta, N., Lesaint, O., & Vorobiev, E. (2013a). A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innovative Food Science & Emerging Technologies, 19, 124–132.

    Article  CAS  Google Scholar 

  • Boussetta, N., Turk, M. F., De Taeye, C., Larondelle, Y., Lanoisellé, J., & Vorobiev, E. (2013b). Effect of high voltage electrical discharges, heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake. Industrial Crops and Products, 49, 690–696.

    Article  CAS  Google Scholar 

  • Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2014). Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innovative Food Science & Emerging Technologies.

  • Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.

    Article  CAS  Google Scholar 

  • Cholet, C. L., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L’Hyvernay, A., Ghidossi, R., Vorobiev, E., Mietton-Peuchot, M., & Geny, L. (2014). Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. Journal of Agricultural and Food Chemistry, 62(13), 2925–2934.

    Article  CAS  Google Scholar 

  • Conn, S., Zhang, W., & Franco, C. (2003). Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnology Letters, 25(11), 835–839.

    Article  CAS  Google Scholar 

  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91.

    Article  CAS  Google Scholar 

  • Corrales, M., García, A. F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90(4), 415–421.

    Article  CAS  Google Scholar 

  • Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol‐based antioxidants and the in vitro methods used for their assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173.

    Article  CAS  Google Scholar 

  • Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Gény, L., Vorobiev, E., & Mietton-Peuchot, M. (2014). Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food and Bioprocess Technology, 7(2), 424–436.

    Article  CAS  Google Scholar 

  • Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109–130.

    Article  Google Scholar 

  • Fava, J., Hodara, K., Nieto, A., Guerrero, S., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938–2948.

    Article  CAS  Google Scholar 

  • González-Paramás, A. M., Esteban-Ruano, S., Santos-Buelga, C., de Pascual-Teresa, S., & Rivas-Gonzalo, J. C. (2004). Flavanol content and antioxidant activity in winery byproducts. Journal of Agricultural and Food Chemistry, 52(2), 234–238.

    Article  Google Scholar 

  • Gros, C., Lanoisellé, J., & Vorobiev, E. (2003). Towards an alternative extraction process for linseed oil. Chemical Engineering Research and Design, 81(9), 1059–1065.

    Article  CAS  Google Scholar 

  • Joana Gil‐Chávez, G., Villa, J. A., Fernando Ayala‐Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & González‐Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5–23.

    Article  Google Scholar 

  • Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51(3), 628–633.

    Article  Google Scholar 

  • Knorr, D., Angersbach, A., Eshtiaghi, M. N., Heinz, V., & Lee, D.-U. (2001). Processing concepts based on high intensity electric field pulses. Trends in Food Science & Technology, 12(3), 129–135.

    Article  CAS  Google Scholar 

  • Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., & Tarek, M. (2012). Cell membrane electroporation-part 1: the phenomenon. IEEE Electrical Insulation Magazine, 28(5), 14–23.

    Article  Google Scholar 

  • Krishnaswamy, K., Orsat, V., Gariépy, Y., & Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441–455.

    Article  CAS  Google Scholar 

  • Le Bourvellec, C., & Renard, C. (2005). Non-covalent interaction between procyanidins and apple cell wall material. Part II: quantification and impact of cell wall drying. Biochimica et Biophysica Acta (BBA) - General Subjects, 1725(1), 1–9.

    Article  Google Scholar 

  • Le Bourvellec, C., & Renard, C. M. G. C. (2011). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213–248.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2001). Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innovative Food Science & Emerging Technologies, 2(2), 113–125.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346.

    Article  Google Scholar 

  • Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731–738.

    Article  CAS  Google Scholar 

  • Llobera, A., & Cañellas, J. (2008). Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by‐products. International Journal of Food Science & Technology., 43(11), 1953–1959.

    Article  CAS  Google Scholar 

  • Locke, B., Sato, M., Sunka, P., Hoffmann, M., & Chang, J.-S. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial & Engineering Chemistry Research, 45(3), 882–905.

    Article  CAS  Google Scholar 

  • Markham, K. R., Gould, K. S., Winefield, C. S., Mitchell, K. A., Bloor, S. J., & Boase, M. R. (2000). Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry, 55(4), 327–336.

    Article  CAS  Google Scholar 

  • Novak, I., Janeiro, P., Seruga, M., & Oliveira-Brett, A. M. (2008). Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Analytica Chimica Acta, 630(2), 107–115.

    Article  CAS  Google Scholar 

  • Parry, J. W., Li, H., Liu, J.-R., Zhou, K., Zhang, L., & Ren, S. (2011). Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, 2, 530–540.

    Article  CAS  Google Scholar 

  • Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372.

    Article  CAS  Google Scholar 

  • Pinelo, M., Arnous, A., & Meyer, A. S. (2006). Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology, 17(11), 579–590.

    Article  CAS  Google Scholar 

  • Pliquett, U. (2010). Bioimpedance: a review for food processing. Food Engineering Reviews, 2(2), 74–94.

    Article  CAS  Google Scholar 

  • Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouysegu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586–621.

    Article  CAS  Google Scholar 

  • Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G., & Vorobiev, E. (2014) A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Research International.

  • Ribéreau-Gayon, P., Dubourdieu, D., & Donèche, B. (2012) Handbook of oenology. In The chemistry of wine. Stabilization and treatments (vol 2. 2nd edn. pp. 451). Wiley.

  • Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology, 5(2), 409–424.

    Article  CAS  Google Scholar 

  • Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B., & Wrolstad, R. E. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry, 50(21), 6172–6181.

    Article  CAS  Google Scholar 

  • Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423.

    Article  CAS  Google Scholar 

  • Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science & Emerging Technologies, 9(2), 161–169.

    Article  CAS  Google Scholar 

  • Vorobiev, E., & Lebovka, N. (2008). Electrotechnologies for extraction from food plants and biomaterials. New York: Springer.

    Google Scholar 

  • Vorobiev, E., & Lebovka, N. (2009) Pulsed-electric-fields-induced effects in plant tissues: Fundamental aspects and perspectives of applications. In Electrotechnologies for extraction from food plants and biomaterials (pp. 39–81).

  • Vorobiev, E., & Lebovka, N. (2010). Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Engineering Reviews, 2(2), 95–108.

    Article  CAS  Google Scholar 

  • Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology Biochemistry and Pharmacology, 105, 175–256.

    Article  Google Scholar 

Download references

Acknowledgments

This study received financial support from the Agence National de Recherche under the first transnational call of ECO-INNOVERA (ERA-NET). The authors would like to thank the Ecoled’ingénieurs de Changins (EIC, Switzerland), and particularly Ms. Anna-Claire Silvestri for providing grape pomace. F.J. Barba wishes to thank the Valencian Autonomous Government (Conselleríad’Educació, Cultura I Esport. Generalitat Valenciana) for the postdoctoral fellowship of the VALi+d program “ProgramaVALi+d per a investigadors en fase postdoctoral 2013” (APOSTD/2013/092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylène Brianceau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, F.J., Brianceau, S., Turk, M. et al. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. Food Bioprocess Technol 8, 1139–1148 (2015). https://doi.org/10.1007/s11947-015-1482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1482-3

Keywords

Navigation