Skip to main content
Log in

Microscopic and Spectroscopic Evaluation of Inactivation of Staphylococcus aureus by Pulsed UV Light and Infrared Heating

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pulsed UV light and infrared heat-treated Staphylococcus aureus cells were analyzed using transmission electron microscopy to identify the cell damage due to the treatment process. A 5-s treatment with pulsed UV light resulted in complete inactivation of S. aureus even after enrichment. The temperature increase during the pulsed UV light treatment was insignificant, which suggested a nonthermal treatment. S. aureus was also infrared heat treated using an infrared heating system with six infrared lamps. Five milliliters of S. aureus cells in phosphate buffer was treated at 700°C lamp temperature for 20 min. The microscopic observation clearly indicated that there was cell wall damage, cytoplasmic membrane shrinkage, cellular content leakage, and mesosome disintegration after both pulsed UV light and infrared treatments. Fourier transform infrared microspectrometry was successfully used to classify the pulsed UV light and infrared heat-treated S. aureus by discriminant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbosa-Canovas, G. V., Gongora-Nieto, M. M., Pothamamury, U. R., & Swanson, B. G. (1999). Preservation of foods with pulsed electric fields. New York: Academic.

    Google Scholar 

  • Brouillette, E., Grondin, G., Lefebvre, C., Talbot, B. G., & Malouin, F. (2004). Mouse mastitis model of infection for antimicrobial efficacy studies against intracellular and extracelular forms of Staphylococcus aureus. Veterinary Microbiology, 101, 253–262.

    Article  CAS  Google Scholar 

  • Calderon-Miranda, M. L., Barbosa-Canovas, G. V., & Swanson, B. G. (1999). Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. International Journal of Food Microbiology, 51, 31–38.

    Article  CAS  Google Scholar 

  • CFSAN (Center for Food Safety and Applied Nutrition), US Food and Drug Administration (1992). Staphylococcus aureus. In Foodborne pathogenic microorganisms and natural toxins handbook. Rockville, MD: Center for Food Safety and Applied Nutrition, US Food and Drug Administration Available at: http://www.cfsan.fda.gov/~mow/chap3.html. Accessed 5 November 2007.

    Google Scholar 

  • Dutreux, N., Notermans, S., Wijtzes, T., Gongora-Nieto, M. W., Barbosa-Canovas, G. V., & Swanson, B. G. (2000). Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. International Journal of Food Microbiology, 54, 91–98.

    Article  CAS  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1997). Improvements on cross-validation: The.632+ bootstrap method. Journal of the American Statistical Association, 92, 548–560.

    Article  Google Scholar 

  • Fine, F., & Gervais, P. (2004). Efficiency of pulsed UV light for microbial decontamination of food powders. Journal of Food Protection, 67(4), 787–792.

    CAS  Google Scholar 

  • Fredericks, P. M., Lee, J. B., Osborn, P. R., & Swinkels, D. A. J. (1985). Materials characterization using factor analysis of FT-IR spectra. Part 1: Results. Applied Spectroscopy, 39, 303–310.

    Article  CAS  Google Scholar 

  • Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical Association, 84, 165–175.

    Article  Google Scholar 

  • Gupta, M. J., Irudayaraj, J., & Debroy, C. (2004). Spectroscopic quantification of bacteria using artificial neural networks. Journal of Food Protection, 67, 2550–2554.

    Google Scholar 

  • Holman, H. N., Martin, M. C., Blakely, E. A., Bjornstad, K., & McKinney, W. R. (2000). IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy. Biopolymers, 57(6), 329–335.

    Article  CAS  Google Scholar 

  • Jun, S., & Irudayaraj, J. (2003). A dynamic fungal inactivation approach using selective infrared heating. Transactions of ASABE, 46(5), 1407–1412.

    Google Scholar 

  • Kemsley, E. K. (1998). Discriminant analysis and class modeling of spectroscopic data. Chichester, UK: Wiley.

    Google Scholar 

  • Kilimann, K. V., Doster, W., Vogel, R. F., Hartmann, C., & Gänzle, G. N. (2006). Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: An FT-IR study. Biochimica et Biophysica Acta (BBA)—Proteins & Proteomics, 1764, 1188–1197.

    Article  CAS  Google Scholar 

  • Krishnamurthy, K., Demirci, A., & Irudayaraj, J. (2004). Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. Journal of Food Protection, 67(5), 1027–1030.

    Google Scholar 

  • Liu, H., Du, Y., Wang, X., & Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95, 147–155.

    Article  CAS  Google Scholar 

  • Lucasssen, G. W., Caspers, P. J., & Puppels, G. J. (1998). In vivo infrared and Raman spectroscopy of human stratum corneum. Proceedings of SPIE, 3257, 52–61.

    Article  Google Scholar 

  • Mead, P. S., Slutsker, L., Dietz, V., McCraig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.

    Article  CAS  Google Scholar 

  • Mor Electric Heating Association (2008). Salamander: Ceramic infrared emitters—Technical manual. Comstock Park, MI: Mor Electric Heating Association, Available online at: http://www.infraredheaters.com/pdfs/techman.pdf, Accessed on March 25, 2008.

    Google Scholar 

  • Mordechai, S., Salman, A., Argov, S., Cohen, B., Erukhimovitch, V., Goldstein, J., et al. (2000). Fourier transform infrared spectroscopy of human cancerous and normal intestine. Proceedings of SPIE, 3918, 66–77.

    Article  CAS  Google Scholar 

  • Naumann, D. (2000). Infrared spectroscopy in microbiology. In R. A. Meyers (Ed.) Encyclopedia of analytical chemistry (pp. 102–131). Chichester, UK: Wiley.

    Google Scholar 

  • Prescott, L. M., Harley, J. P., & Klein, D. A. (1999). Microbiology. New York: McGraw-Hill.

    Google Scholar 

  • Rosenthal, I., Rosen, B., & Bernstein, S. (1996). Surface pasteurization of cottage cheese. Milchiwissenschaft, 51(4), 196–201.

    Google Scholar 

  • Singh, R. P., & Yousef, A. E. (2001). Technical elements of new and emerging non-thermal food technologies. Rome, Italy: Food and Agricultural Organization, United Nations, Available at: http://www.fao.org/ag/ags/agsi/Nonthermal/nonthermal_1.htm. Accessed 5 November 2007.

    Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts. New York: Wiley.

    Google Scholar 

  • Stewart, C. M., Cole, M. B., & Schaffner, D. W. (2003). Managing the risk of staphylococcal food poisoning from cream-filled baked goods to meet a food safety objective. Journal of Food Protection, 66(7), 1310–1325.

    Google Scholar 

  • Takeshita, K., Shibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Arihara, K., et al. (2003). Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology, 85, 151–158.

    Article  Google Scholar 

  • Wekhof, A. (2000). Disinfection with flash lamps. PDA Journal of Pharmaceutical Science and Technology, 54, 264–276.

    CAS  Google Scholar 

  • Wilson, R. H., & Goodfellow, B. J. (1992). Mid-infrared spectroscopy. In R. H. Wilson (Eds.) Spectroscopic techniques for food analysis. New York: VCH.

    Google Scholar 

  • Yu, C., & Irudayaraj, J. (2005). Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy. Biopolymers, 77, 368–377.

    Article  CAS  Google Scholar 

  • Zhang, J., Dalal, N., Gleason, C., Matthews, M. A., Waller, L. N., Fox, K. F., et al. (2006). On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. The Journal of Supercritical Fluids, 38, 268–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided in part by USDA Special Research Grant (2002-34163-11837) and Pennsylvania Agricultural Experiment Station. Pulsed UV light system was provided by a grant from NASA Food Technology Commercial Space Center. The authors express their sincere appreciation to the staff at the electron microscopy facility of Pennsylvania State University, especially Dr. Gang Ning, Ruth Haldeman, and Missy Hazen for their technical support. We would like to acknowledge Dr. Eric T. Harvill and Dr. Andrew Henderson for granting permission to use their equipment and facility. We also would like to express our gratitude to Xenon for providing technical support for the pulsed UV light system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Demirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurthy, K., Tewari, J.C., Irudayaraj, J. et al. Microscopic and Spectroscopic Evaluation of Inactivation of Staphylococcus aureus by Pulsed UV Light and Infrared Heating. Food Bioprocess Technol 3, 93–104 (2010). https://doi.org/10.1007/s11947-008-0084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0084-8

Keywords

Navigation