Skip to main content
Log in

Quantification of Extra-virgin Olive Oil Adulteration with Soybean Oil: a Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this work, blends of olive and soybean oils were analyzed by near-infrared spectroscopy (NIR), mid-infrared (MIR), and Raman techniques to evaluate adulterations in olive oils. A representative group of different commercial brands of soybean oil and extra-virgin olive oil were analyzed by gas chromatography with flame ionization detector in order to explore the chemical similarity and composition of the fatty acid (FA) profile. Two stock solutions were prepared, one produced from a mixture of soybean oils and the other from the mixture of olive oils. From these stock solutions, 60 samples were prepared, simulating adulteration levels of extra-virgin olive oil with soybean oil between 0 and 100 %. It was possible to fit a model able to predict fraud within the interval investigated by partial least squares regression approach, with precision and accuracy values for root mean squared error of prediction of 1.76 (NIR), 4.89 (MIR), and 1.57 (Raman) and coefficient of determination R 2 greater than 0.98 for the three techniques. The methodologies demonstrated to be very useful for the quantification of extra-virgin olive oil adulteration with soybean oil, presenting short analysis time, low cost, and absence of sample preparation procedures as main advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afseth NK, Segtnan VH, Marquardt BJ, Wold JP (2005) Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system. Appl Spectrosc 59:1324–1332. doi:10.1366/000370205774783304

    Article  CAS  Google Scholar 

  • Afseth NK, Wold JP, Segtnan VH (2006) The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Analytica Chimica Acta 572:85–92. doi:10.1016/j.aca.2006.05.013

    Article  CAS  Google Scholar 

  • AOCS (reapproved 1997, “revised 2001”) Determination of cis- and trans- fatty acids in hydrogenated and refined oils and fats by capillary GLC

  • Aparicio R, Morales MT, Aparicio-Ruiz R, Tena N, García-González DL (2013) Authenticity of olive oil: mapping and comparing official methods and promising alternatives. Food Research International 54:2025–2038. doi:10.1016/j.foodres.2013.07.039

    Article  CAS  Google Scholar 

  • Becerra-Herrera M, Sánchez-Astudillo M, Beltrán R, Sayago A (2014) Determination of phenolic compounds in olive oil: new method based on liquid–liquid micro extraction and ultra high performance liquid chromatography–triple–quadrupole mass spectrometry LWT. Food Science and Technology 57:49–57. doi:10.1016/j.lwt.2014.01.016

    CAS  Google Scholar 

  • Cajka T, Riddellova K, Klimankova E, Cerna M, Pudil F, Hajslova J (2010) Traceability of olive oil based on volatiles pattern and multivariate analysis. Food Chemistry 121:282–289. doi:10.1016/j.foodchem.2009.12.011

    Article  CAS  Google Scholar 

  • Campbell GP, Curran JM (2009) The interpretation of elemental composition measurements from forensic glass evidence III. Science & Justice 49:2–7. doi:10.1016/j.scijus.2008.09.001

    Article  Google Scholar 

  • Christie WW, Han X (2012) Chapter 7—preparation of derivatives of fatty acids. In: Christie WW, Han X (eds) Lipid analysis, 4th edn. Woodhead, pp 145–158. doi:10.1533/9780857097866.145

  • Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences 20:935–940. doi:10.2116/analsci.20.935

    Article  CAS  Google Scholar 

  • D’Angelo S et al (2005) Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radical Biology and Medicine 38:908–919. doi:10.1016/j.freeradbiomed.2004.12.015

    Article  Google Scholar 

  • Dais P, Hatzakis E (2013) Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review. Analytica Chimica Acta 765:1–27. doi:10.1016/j.aca.2012.12.003

    Article  CAS  Google Scholar 

  • Delmonte P, Fardin Kia A-R, Kramer JKG, Mossoba MM, Sidisky L, Rader JI (2011) Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. Journal of Chromatography A 1218:545–554. doi:10.1016/j.chroma.2010.11.072

    Article  CAS  Google Scholar 

  • Fassel VA (1976) International Union of Pure and Applied Chemistry. Analytical Chemistry Division. Commission on Spectrochemical and Other Optical Procedures for Analysis. Nomenclature, symbols, units and their usage in spectrochemical analysis. II. Data interpretation. Analytical Chemistry 48:2294–2294. doi:10.1021/ac50008a068

    Article  CAS  Google Scholar 

  • Franco MN et al (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chemistry 163:289–298. doi:10.1016/j.foodchem.2014.04.091

    Article  CAS  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta 185:1–17. doi:10.1016/0003-2670(86)80028-9

    Article  CAS  Google Scholar 

  • Guillén MD, Cabo N (1997) Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J Amer Oil Chem Soc 74:1281–1286. doi:10.1007/s11746-997-0058-4

    Article  Google Scholar 

  • Guzmán E, Baeten V, Fernández Pierna JA, García-Mesa JA (2011) Application of low-resolution Raman spectroscopy for the analysis of oxidized olive oil. Food Control 22:2036–2040. doi:10.1016/j.foodcont.2011.05.025

    Article  Google Scholar 

  • Hotelling H (1931) The generalization of Student’s ratio. The Annals of Mathematical Statistics 2:360–378. doi:10.2307/2957535

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer series in statistics. Springer

  • Lamy S, Ouanouki A, Béliveau R, Desrosiers RR (2014) Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation. Experimental Cell Research 322:89–98. doi:10.1016/j.yexcr.2013.11.022

    Article  CAS  Google Scholar 

  • López-Díez EC, Bianchi G, Goodacre R (2003) Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry 51:6145–6150. doi:10.1021/jf034493d

    Article  Google Scholar 

  • Lopez S et al (2014) Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. Biochimica et Biophysica Acta (BBA)—Biomembranes 1838:1638–1656. doi:10.1016/j.bbamem.2014.01.007

    Article  CAS  Google Scholar 

  • Lorencini M, Brohem CA, Dieamant GC, Zanchin NIT, Maibach HI (2014) Active ingredients against human epidermal aging. Ageing Research Reviews 15:100–115. doi:10.1016/j.arr.2014.03.002

    Article  CAS  Google Scholar 

  • Ma W, Tang C-H, Yin S-W, Yang X-Q, Wang Q, Liu F, Wei Z-H (2012) Characterization of gelatin-based edible films incorporated with olive oil. Food Research International 49:572–579. doi:10.1016/j.foodres.2012.07.037

    Article  CAS  Google Scholar 

  • Mailer R (2004) Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. J Amer Oil Chem Soc 81:823–827. doi:10.1007/s11746-004-0986-4

    Article  CAS  Google Scholar 

  • Marcos B, Sárraga C, Castellari M, Kappen F, Schennink G, Arnau J (2014) Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications. Food Packaging and Shelf Life 1:140–150. doi:10.1016/j.fpsl.2014.04.002

    Article  Google Scholar 

  • Mba O, Adewale P, Dumont M-J, Ngadi M (2014) Application of near-infrared spectroscopy to characterize binary blends of palm and canola oils. Industrial Crops and Products 61:472–478. doi:10.1016/j.indcrop.2014.07.037

    Article  CAS  Google Scholar 

  • Moore JC, Spink J, Lipp M (2012) Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of Food Science 77:R118–R126. doi:10.1111/j.1750-3841.2012.02657.x

    Article  CAS  Google Scholar 

  • Moros J, Garrigues S, Mdl G (2010) Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC Trends in Analytical Chemistry 29:578–591. doi:10.1016/j.trac.2009.12.012

    Article  CAS  Google Scholar 

  • Olsen EF, Rukke E-O, Flåtten A, Isaksson T (2007) Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Science 76:628–634. doi:10.1016/j.meatsci.2007.02.004

    Article  CAS  Google Scholar 

  • Özdemir D, Öztürk B (2007) Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil. Journal of Food and Drug Analysis 15:40–47

    Google Scholar 

  • Pereda M, Dufresne A, Aranguren MI, Marcovich NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers 101:1018–1026. doi:10.1016/j.carbpol.2013.10.046

    Article  CAS  Google Scholar 

  • Portarena S, Gavrichkova O, Lauteri M, Brugnoli E (2014) Authentication and traceability of Italian extra-virgin olive oils by means of stable isotopes techniques. Food Chemistry 164:12–16. doi:10.1016/j.foodchem.2014.04.115

    Article  CAS  Google Scholar 

  • Priore P, Siculella L, Gnoni GV (2014) Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes. The Journal of Nutritional Biochemistry 25:683–691. doi:10.1016/j.jnutbio.2014.01.009

    Article  CAS  Google Scholar 

  • Rohman A, Che Man YB (2011) The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chemistry 129:583–588. doi:10.1016/j.foodchem.2011.04.070

    Article  CAS  Google Scholar 

  • Soltanipoor F, Delaram M, Taavoni S, Haghani H (2012) The effect of olive oil on prevention of striae gravidarum: a randomized controlled clinical trial. Complementary Therapies in Medicine 20:263–266. doi:10.1016/j.ctim.2012.05.001

    Article  CAS  Google Scholar 

  • Valenzuela C, Abugoch L, Tapia C (2013) Quinoa protein–chitosan–sunflower oil edible film: mechanical, barrier and structural properties. LWT - Food Science and Technology 50:531–537. doi:10.1016/j.lwt.2012.08.010

    Article  CAS  Google Scholar 

  • Wold S, Geladi P, Esbensen K, Öhman J (1987) Multi-way principal components—and PLS—analysis. Journal of Chemometrics 1:41–56. doi:10.1002/cem.1180010107

    Article  CAS  Google Scholar 

  • Zhang X-F, Zou M-Q, Qi X-H, Liu F, Zhang C, Yin F (2011) Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. Journal of Raman Spectroscopy 42:1784–1788. doi:10.1002/jrs.2933

    Article  CAS  Google Scholar 

  • Zou M-Q et al (2009) Rapid authentication of olive oil adulteration by Raman spectrometry. Journal of Agricultural and Food Chemistry 57:6001–6006. doi:10.1021/jf900217s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Brazilian agencies CAPES, CNPQ, and FAPEMIG for financial support.

Conflict of Interest

Thiago de Oliveira Mendes declares that he has no conflict of interest. Roney Alves da Rocha declares that he has no conflict of interest. Brenda Lee Simas Porto declares that she has no conflict of interest. Marcone Augusto Leal de Oliveira declares that he has no conflict of interest. Virgílio de Carvalho dos Anjos declares that he has no conflict of interest. Maria Jose Valenzuela Bell declares that she has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. V. Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, T.O., da Rocha, R.A., Porto, B.L.S. et al. Quantification of Extra-virgin Olive Oil Adulteration with Soybean Oil: a Comparative Study of NIR, MIR, and Raman Spectroscopy Associated with Chemometric Approaches. Food Anal. Methods 8, 2339–2346 (2015). https://doi.org/10.1007/s12161-015-0121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0121-y

Keywords

Navigation