Skip to main content
Log in

The Impact of Thermosonication and Pulsed Electric Fields on Staphylococcus aureus Inactivation and Selected Quality Parameters in Orange Juice

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of thermosonication (TS) and pulsed electric fields (PEF) on inactivation of Staphylococcus aureus (SST 2.4) and selected quality aspects in orange juice was investigated. Conventional pasteurization (HTST, 94 °C for 26 s) was used as a control. TS (10 min at 55 °C) applied in combination with PEF (40 kV/cm for 150 μs) resulted in a comparable inactivation of S. aureus to that achieved by conventional HTST. TS/PEF did not affect the pH, conductivity, or °Brix and had a milder impact on the juice color than thermal treatment. Furthermore, the non-enzymatic browning index was significantly affected by HTST (P < 0.05) but not by TS and PEF. Ascorbic acid retention was almost complete after TS and PEF (96.0%), but it was substantially lower (P < 0.05) after HTST (80.5%). Residual activity of pectin methyl esterase (PME) decreased as PEF field strength and treatment time increased; however, applying TS and PEF in combination left a greater residual PME activity than HTST (12.9 vs 5.0%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, F. I. K., & Russell, C. (1975). Synergism between ultrasonic waves and hydrogen peroxide in the killing of microorganisms. Journal of Applied Bacteriology, 39(1), 31–40.

    CAS  Google Scholar 

  • Ayhan, Z., Zhang, Q. H., & Min, D. B. (2002). Effects of pulsed electric field processing and storage on the quality and stability of single strength orange juice. Journal of Food Protection, 65(10), 1623–1627.

    CAS  Google Scholar 

  • Barbosa-Cánovas, G. V., Tapia, M. S., & Cano, M. P. (Eds.) (2005). Novel food processing technologies. Boca Raton, USA: CRC Press.

  • Barsotti, L., Merle, P., & Cheftel, J. C. (1999). Food processing by pulsed electric fields, I. Physical aspects. Food Review International, 15(2), 163–180.

    Article  Google Scholar 

  • Butz, P., & Tauscher, B. (2002). Emerging technologies: Chemical aspects. Food Research International, 35(2–3), 279–284.

    Article  CAS  Google Scholar 

  • Cserhalmi, Zs., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science and Emerging Technologies, 7(1–2), 49–54.

    Article  CAS  Google Scholar 

  • Doevenspeck, H. (1961). Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft, 13(12), 986–987.

    Google Scholar 

  • Earnshaw, R. G., Appleyard, J., & Hurst, R. M. (1995). Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. Journal of Food Microbiology, 28(2), 197–219.

    Article  CAS  Google Scholar 

  • Evrendilek, G. A., Zhang, Q. H., & Richter, E. R. (2004). Application of pulsed electric fields to skim milk inoculated with Staphylococcus aureus. Biosystems Engineering, 87(2), 137–144.

    Article  Google Scholar 

  • FDA (2001). Hazard analysis and critical control point (HACCP): Procedures for the safe and sanitary processing and importing of juices. Final rule. Federal Register, 66(13), 6137–6202.

    Google Scholar 

  • Fellows, P. J. (2000). Food processing technology: Principles and practice. New York, USA: CRC Press.

    Google Scholar 

  • García, D., Hassani, M., Mañas, P., Condón, S., & Pagán, R. (2005). Inactivation of Escherichia coli O157:H7 during the storage under refrigeration of apple juice treated by pulsed electric fields. Journal of Food Safety, 25(1), 30–42.

    Article  Google Scholar 

  • Harvey, F., & Loomis, A. (1929). The destruction of luminous bacteria by high frequency sound waves. Journal of Bacteriology, 17(5), 373–376.

    CAS  Google Scholar 

  • Hicks, D. (1990). Production and packaging of non-carbonated fruit juices and fruit beverages. Glasgow, UK: Blackie and Son.

    Google Scholar 

  • Hodgins, A. M., Mittal, G. S., & Griffiths, M. W. (2002). Pasteurization of fresh orange juice using low-energy pulsed electrical field. Journal of Food Science, 67(6), 2294–2299.

    Article  CAS  Google Scholar 

  • Hoover, D. G. (1997). Minimally processed fruits and vegetables: Reducing microbial load by nonthermal physical treatments. Food Technology, 51(6), 66–71.

    Google Scholar 

  • Hülsheger, H., Potel, J., & Niemann, E. G. (1983). Electric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics, 22(2), 149–162.

    Article  Google Scholar 

  • Irwe, S., & Olsson, I. (1994). Reduction of pectinesterase activity in orange juice by high-pressure treatment. In R. P. Singh, & F. A. R. Oliveira (Eds.) Minimal processing of foods and process optimization (pp. 35–42). Ann Arbor, MI, USA: CRC Press.

    Google Scholar 

  • Jeyamkondan, S., Jayas, D. S., & Holley, R. A. (1999). Pulsed electric field processing of foods: A review. Journal of Food Protection, 62(9), 1088–1096.

    CAS  Google Scholar 

  • Kimball, D. (1991). Citrus processing: Quality control and technology. New York, USA: Springer.

    Google Scholar 

  • Lamb, J. L., Gogley, J. M., Thompson, M. J., Solis, D. R., & Sen, S. (2002). Effect of low-dose gamma irradiation on Staphylococcus aureus and product packaging in ready-to-eat ham and cheese sandwiches. Journal of Food Protection, 65(11), 1800–1805.

    Google Scholar 

  • Lee, S. H., & Coates, G. A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. Lebensmittel-Wissenschaft und -Technologie, 36(1), 153–156.

    Article  CAS  Google Scholar 

  • Leistner, L., & Gorris, L. G. M. (1995). Food preservation by hurdle technology. Trends in Food Science and Technology, 6(2), 41–46.

    Article  CAS  Google Scholar 

  • Mañas, P., & Pagán, R. (2005). Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, 98(6), 1387–1399.

    Article  Google Scholar 

  • McDonald, C. J., Lloyd, S. W., Vitale, M. A., Petersson, K., & Innings, F. (2000). Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm. Food Engineering and Physical Properties, 65(6), 984–989.

    CAS  Google Scholar 

  • Meydav, S., Saguy, I., & Kopelman, I. J. (1977). Browning determination in citrus products. Journal of Agriculture and Food Chemistry, 25(3), 602–604.

    Article  CAS  Google Scholar 

  • Min, S., Jin, Z. T., Min, S. K., Yeom, H., & Zhang, Q. H. (2003). Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 68(4), 1265–1271.

    Article  CAS  Google Scholar 

  • Patterson, M. F., Quinn, M., Simpson, R., & Gilmour, A. (1995). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. Journal of Food Protection, 58(5), 524–529.

    Google Scholar 

  • Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87(3), 207–216.

    Article  CAS  Google Scholar 

  • Pothakamury, U. R., Monsalve-González, A., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Research International, 28(2), 167–171.

    Article  Google Scholar 

  • Qin, B. L., Barbosa-Cánovas, G. V., Swanson, B. G., Pedrow, B. G., & Olsen, R. G. (1998). Inactivation of microorganisms using pulsed electric field continuous treatment system. Institute of Electrical and Electronics Engineers Transaction on Industry Application, 34(1), 55–60.

    Google Scholar 

  • Qiu, X., Sharma, S., Tuhela, L., Jia, M., & Zhang, Q. H. (1998). An integrated PEF pilot plant for continuous non-thermal pasteurization of fresh orange juice. Transactions of the American Society of Agricultural Engineers, 41(4), 1069–1074.

    Google Scholar 

  • Raso, J., Calderón, M. L., Góngora, M., Barbosa-Cánovas, G. V., & Swanson, B. G. (1998). Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields. Lebensmittel-Wissenschaft und -Technologie, 31(7–8), 668–672.

    Article  CAS  Google Scholar 

  • Rodrigo, D., Barbosa-Canovas, G. V., Martinez, A., & Rodrigo, M. (2003). Pectin methyl esterase and natural microbial flora of fresh mixed orange and carrot juice treated with pulsed electric fields. Journal of Food Protection, 66(12), 2336–2342.

    CAS  Google Scholar 

  • Rodríguez-Calleja, J. M., Cebrián, G., Condón, S., & Mañas, P. (2006). Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric fields and ultrasound under pressure. Journal of Applied Microbiology, 100(5), 1054–1062.

    Article  Google Scholar 

  • Roodenburg, B., Morren, J., Berg, H. E., & De Haan, S. W. H. (2005). Metal release in a stainless steel pulsed electric field (PEF) system Part II. The treatment of orange juice; related to legislation and treatment chamber lifetime. Innovative Food Science and Emerging Technologies, 6(3), 337–345.

    Article  CAS  Google Scholar 

  • Rüegg, M., Moor, U., & Blanc, B. (1977). A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. Journal of Dairy Research, 44(3), 509–520.

    Article  Google Scholar 

  • Sala, F. J., Burgos, J., Condón, S., López, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In GWGould (Ed.) New methods of food preservation (pp. 176–204). London, UK: Blackie Academic & Professional.

    Google Scholar 

  • Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.

    Article  CAS  Google Scholar 

  • Schoenbach, K. H., Katsuki, S., Stark, R. H., Buescher, E. S., & Beebe, S. J. (2002). Bioelectrics—New applications for pulsed power technology. Institute of Electrical and Electronics Engineers Transactions on Plasma Science, 30(1), 293–300.

    CAS  Google Scholar 

  • Señorans, F. J., Ibáñez, E., & Cifuentes, A. (2003). New trends in food processing. Critical Reviews in Food Science and Nutrition, 43(5), 507–526.

    Article  CAS  Google Scholar 

  • Sizer, C. E., & Waugh, P. L. (1988). Maintaining flavor and nutrient quality of aseptic orange juice. Food Technology, 42(6), 152–159.

    Google Scholar 

  • Tillmans, J., Hirsch, P., & Siebert, F. (1932). Das Reduktionsvermögen pflanzlicher Lebensmittel und seine Beziehung zum Vitamin C. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 63(1), 21–30.

    CAS  Google Scholar 

  • Utsunomiya, Y., & Kosaka, Y. (1979). Application of supersonic waves to food. Journal of the Faculty of Applied Biological Sciences Hiroshima University, 18(2), 225–231.

    Google Scholar 

  • Van Loey, A., Verachtert, B., & Hendrickx, M. (2002). Effects of high electric field pulses on enzymes. Trends in Food Science and Technology, 12(3–4), 94–102.

    Google Scholar 

  • Yeom, H. W., Streaker, C. B., Zhang, Q. H., & Min, D. B. (2000). Effects of pulsed electric fields on the activity of microorganisms and pectin methyl esterase in orange juice. Journal of Food Science, 65(8), 1359–1363.

    Article  CAS  Google Scholar 

  • Yeom, H. W., Zhang, Q. H., & Chism, G. W. (2002). Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. Journal of Food Science, 67(6), 2154–2159.

    Article  CAS  Google Scholar 

  • Zenker, M., Heinz, V., & Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66(9), 1642–1649.

    CAS  Google Scholar 

  • Zhang, Q. H., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurisation. Journal of Food Engineering, 25(2), 261–281.

    Article  Google Scholar 

  • Zimmermann, U., Pilwat, G., & Riemann, F. (1974). Dielectric breakdown in cell membranes. Biophysical Journal, 14(11), 881–899.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support of the Non-Commissioned Food Institutional Research Measure, funded by the Department of Agriculture, Fisheries and Food, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walkling-Ribeiro, M., Noci, F., Riener, J. et al. The Impact of Thermosonication and Pulsed Electric Fields on Staphylococcus aureus Inactivation and Selected Quality Parameters in Orange Juice. Food Bioprocess Technol 2, 422–430 (2009). https://doi.org/10.1007/s11947-007-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0045-7

Keywords

Navigation