Skip to main content
Log in

AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The structure and size of bimetallic catalysts play a crucial role in many important chemical transformations. Controlled synthesis of bimetallic nanoparticles avoiding overgrowth and aggregation can be achieved by surfactants, which are always detrimental to catalytic performances and understanding of structure-property relationship. Preparation of surface-clean bimetallic catalysts with uniform size and well-defined structure is still challenging. Herein the Au-Pt bimetallic nanoparticles immobilized on SBA-15 were prepared by facile adsorption-reduction method. Characterizations showed that Au-Pt bimetallic nanoparticles were evenly confined within the mesopores of SBA-15, possessing the uniform size of 6.0 nm and existing in the form of alloy structure. For the first time the Au-Pt bimetallic nanoalloys with Au-to-Pt molar ratio of 5:1 (Au5Pt1@SBA-15) exhibited a lot higher activity than monometallic Au@SBA-15 and Pt@SBA-15 catalysts with excellent selectivity towards 1,2,3,4-tetrahydroquinoline for chemoselective hydrogenation of quinoline in water under very mild conditions. It was superior to other heterogeneous catalysts reported to date. The observed properties were related to the synergic effect between Au and Pt. The Pt sites of high electron density originated from the electron transfer between Au and Pt enhanced the ability of H2 dissociation and then provided a new and main approach to H2 splitting, while the Au sites accounted for the adsorption and activation of quinoline. This precise synthetic strategy will be very helpful to explore surface-clean gold-based bimetallic catalysts with high performance for selective hydrogenations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  2. Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

    Article  CAS  Google Scholar 

  3. Chen, X.; Qiao, Z. W.; Hou, B.; Jiang, H.; Gong, W.; Dong, J. Q.; Li, H. Y.; Cui, Y.; Liu, Y. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res. 2021, 14, 466–472.

    Article  CAS  Google Scholar 

  4. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  5. Deraedt, C.; Ye, R.; Ralston, W. T.; Toste, F. D.; Somorjai, G. A. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J. Am. Chem. Soc. 2017, 139, 18084–18092.

    Article  CAS  Google Scholar 

  6. Guo, M.; Li, C.; Yang, Q. H. Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catal. Sci. Technol. 2017, 7, 2221–2227.

    Article  CAS  Google Scholar 

  7. Zhang, S.; Xia, Z. M.; Ni, T. Y.; Zhang, Z. Y.; Ma, Y. Y.; Qu, Y. Q. Strong electronic metal-support interaction of Pt/CeO2 nabbles efficient and selective hydrogenation of quinolines at room temperature. J. Catal. 2018, 359, 101–111.

    Article  CAS  Google Scholar 

  8. Gong, Y. T.; Zhang, P. F.; Xu, X.; Li, Y.; Li, H. R.; Wang, Y. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J. Catal. 2013, 297, 272–280.

    Article  CAS  Google Scholar 

  9. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    Article  CAS  Google Scholar 

  10. Dell’Anna, M. M.; Capodiferro, V. F.; Mali, M.; Manno, D.; Cotugno, P.; Monopoli, A.; Mastrorilli, P. Highly selective hydrogenation of quinolines promoted by recyclable polymer supported palladium nanoparticles under mild conditions in aqueous medium. Appl. Catal. A-Gen. 2014, 481, 89–95.

    Article  Google Scholar 

  11. Ge, D. H.; Hu, L.; Wang, J. Q.; Li, X. M.; Qi, F. Q.; Lu, J. M.; Cao, X. Q.; Gu, H. W. Reversible hydrogenation-oxidative dehydrogenation of quinolines over a highly active Pt nanowire catalyst under mild conditions. ChemCatChem 2013, 5, 2183–2186.

    Article  CAS  Google Scholar 

  12. Xue, X. R.; Zeng, M.; Wang, Y. H. Highly active and recyclable Pt nanocatalyst for hydrogenation of quinolines and isoquinolines. Appl. Catal. A-Gen. 2018, 560, 37–41.

    Article  CAS  Google Scholar 

  13. Zhang, L.; Wang, X. Y.; Xue, Y.; Zeng, X. J.; Chen, H.; Li, R. X.; Wang, S. L. Cooperation between the surface hydroxyl groups of Ru-SiO2@mSiO2 and water for good catalytic performance for hydrogenation of quinoline. Catal. Sci. Technol. 2014, 4, 1939–1948.

    Article  CAS  Google Scholar 

  14. Zhu, D. M.; Jiang, H. B.; Zhang, L.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; Li, R. X. Aqueous phase hydrogenation of quinoline to decahydroquinoline catalyzed by ruthenium nanoparticles supported on glucos-derived carbon spheres. ChemCatChem 2014, 6, 2954–2960.

    Article  CAS  Google Scholar 

  15. Wei, Z. Z.; Chen, Y. Q.; Wang, J.; Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. Cobalt encapsulated in N-doped graphene layers: An efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 2016, 6, 5816–5822.

    Article  CAS  Google Scholar 

  16. Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y. Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.

    Article  CAS  Google Scholar 

  17. Masatake, H.; Tetsuhiko, K.; Hiroshi, S.; Nobumasa, Y. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.

    Article  Google Scholar 

  18. Bailie, J. E.; Hutchings, G. J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun. 1999, 2151–2152.

  19. Weng, B.; Jiang, Y. H.; Liao, H. G.; Roeffaers, M. B. J.; Lai, F. L.; Huang, H. W.; Tang, Z. C. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3289-z.

  20. Zhang, Y.; Hu, B.; Cao, X. M.; Luo, L.; Xiong, Y.; Wang, Z. P; Hong, X.; Ding, S. Y. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 2021, 14, 1018–1025.

    Article  CAS  Google Scholar 

  21. Zhao, J. B.; Li, Q.; Zhuang, S. L.; Song, Y. B.; Morris, D. J.; Zhou, M.; Wu, Z. K.; Zhang, P.; Jin, R. C. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 2018, 9, 7173–7179.

    Article  CAS  Google Scholar 

  22. Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 49, 1295–1298.

    Article  CAS  Google Scholar 

  23. Tan, Y.; Liu, X. Y.; Li, L.; Kang, L. L.; Wang, A. Q.; Zhang, T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 174–182.

    Article  CAS  Google Scholar 

  24. Zhao, J. B.; Yuan, H. F.; Qin, X. M.; Tian, K.; Liu, Y. F.; Wei, C. Z.; Zhang, Z. Q.; Zhou, L. M.; Fang, S. M. Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1, 2, 3, 4-tetrahydroquinoline. Catal. Lett. 2020, 150, 2841–2849.

    Article  CAS  Google Scholar 

  25. Zhao, J. B.; Yuan, H. F.; Li, J. C.; Bing, W. Z.; Yang, W. C.; Liu, Y. F.; Chen, J. L.; Wei, C. Z.; Zhou, L. M.; Fang, S. M. Effects of preparation parameters of NiAl oxide-supported Au catalysts on nitro compounds chemoselective hydrogenation. ACS Omega 2020, 5, 7011–7017.

    Article  CAS  Google Scholar 

  26. Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.

    Article  CAS  Google Scholar 

  27. Zhao, C. M.; Luo, G.; Liu, X. K.; Zhang, W.; Li, Z. J.; Xu, Q.; Zhang, Q. H.; Wang, H. J.; Li, D. M.; Zhou, F. Y. et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Adv. Mater. 2020, 32, 2002382.

    Article  CAS  Google Scholar 

  28. Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222–3232.

    Article  CAS  Google Scholar 

  29. Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

    Article  CAS  Google Scholar 

  30. Xu, Y. J.; Liu, L. L.; Chong, H. B.; Yang, S.; Xiang, J.; Meng, X. M.; Zhu, M. Z. The key gold: Enhanced platinum catalysis for the selective hydrogenation of α, β-unsaturated ketone. J. Phys. Chem. C 2016, 120, 12446–12451.

    Article  CAS  Google Scholar 

  31. Serna, P.; Concepción, P.; Corma, A. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 2009, 265, 19–25.

    Article  CAS  Google Scholar 

  32. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  CAS  Google Scholar 

  33. Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

    Article  CAS  Google Scholar 

  34. Cargnello, M.; Agarwal, R.; Klein, D. R.; Diroll, B. T.; Agarwal, R.; Murray, C. B. Uniform bimetallic nanocrystals by high-temperature seed-mediated colloidal synthesis and their catalytic properties for semiconducting nanowire growth. Chem. Mater. 2015, 27, 5833–5838.

    Article  CAS  Google Scholar 

  35. Zhang, L.; Yu, S. N.; Zhang, J. J.; Gong, J. L. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Chem. Sci. 2016, 7, 3500–3505.

    Article  CAS  Google Scholar 

  36. Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

    Article  CAS  Google Scholar 

  37. Sun, K. Q.; Hong, Y. C.; Zhang, G. R.; Xu, B. Q. Synergy between Pt and Au in Pt-on-Au nanostructures for chemoselective hydrogenation catalysis. ACS Catal. 2011, 1, 1336–1346.

    Article  CAS  Google Scholar 

  38. Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

    Article  CAS  Google Scholar 

  39. Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

    Article  CAS  Google Scholar 

  40. Guo, L.; Mao, J. J.; Guo, S. X.; Zhang, Q.; Cai, S. F.; He, W. PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Res. 2019, 12, 1659–1662.

    Article  CAS  Google Scholar 

  41. Zhao, J. B.; Yuan, H. F.; Gui, Y. H.; Li, X. M.; Qin, X. M.; Wei, C. Z.; Liu, Y. F.; Wang, G. Q.; Zhou, L. M; Fang, S. M. Engineering the interface of Au nanocatalysts with FeOx for enhanced selective hydrogenation of cinnamaldehyde. J. Mater. Sci. 2021, 56, 5760–5771.

    Article  CAS  Google Scholar 

  42. Petkov, V.; Wanjala, B. N.; Loukrakpam, R.; Luo, J.; Yang, L. F.; Zhong, C. J.; Shastri, S. Pt-Au alloying at the nanoscale. Nano Lett. 2012, 12, 4289–4299.

    Article  CAS  Google Scholar 

  43. Zhang, Z. W.; Zhang, J. H.; Liu, G. Q.; Xue, M. W.; Wang, Z. Z.; Bu, X. H.; Wu, Q.; Zhao, X. J. Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol. Korean J. Chem. Eng. 2017, 34, 2471–2479.

    Article  CAS  Google Scholar 

  44. Wu, K.; Wang, X. Y.; Guo, L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y. W.; Sun, L. D. et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044–2055.

    Article  CAS  Google Scholar 

  45. Onoe, T.; Iwamoto, S.; Inoue, M. Synthesis and activity of the Pt catalyst supported on CNT. Catal. Commun. 2007, 8, 701–706.

    Article  CAS  Google Scholar 

  46. Lopez-Sanchez, J. A.; Dimitratos, N.; Miedziak, P.; Ntainjua, E.; Edwards, J. K.; Morgan, D.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Hutchings, G. J. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Phys. Chem. Chem. Phys. 2008, 10, 1921–1930.

    Article  CAS  Google Scholar 

  47. Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Michalska, M.; Jurga, S.; Zaleska-Medynska, A. The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. Mol. Catal. 2017, 442, 154–163.

    Article  Google Scholar 

  48. Luo, Z. M.; Tan, C. L.; Lai, Z. C.; Zhang, X.; Chen, J. Z.; Chen, Y.; Chen, B.; Gong, Y.; Zhang, Z. C.; Wu, X. et al. A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Sci. China Mater. 2019, 62, 115–121.

    Article  CAS  Google Scholar 

  49. Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

    Article  CAS  Google Scholar 

  50. Zhao, J. B.; Liu, H.; Ye, S.; Cui, Y. M.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Ding, W. P. Half-encapsulated Au nanoparticles by nano iron oxide: Promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale 2013, 5, 9546–9552.

    Article  CAS  Google Scholar 

  51. van der Hoeven, J. E. S.; Jelic, J.; Olthof, L. A.; Totarella, G., van Dijk-Moes, R. J. A.; Krafft, J. M.; Louis, C.; Studt, F., van Blaaderen, A.; de Jongh, P. E. Unlocking synergy in bimetallic catalysts by core-shell design. Nat. Mater., in press, DOI: https://doi.org/10.1038/s41563-021-00996-3.

  52. Zhang, S.; Xia, Z. M.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y. Q. Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. J. Mater. Chem. A 2017, 5, 3260–3266.

    Article  CAS  Google Scholar 

  53. Cui, X. J.; Huang, Z. J.; van Muyden, A. P.; Fei, Z. F.; Wang, T.; Dyson, P. J. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1(111) facets. Sci. Adv. 2020, 6, eabb3831.

    Article  CAS  Google Scholar 

  54. Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au-Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109–6122.

    Article  CAS  Google Scholar 

  55. Hsu, C. Y.; Chiu, T. C.; Shih, M. H.; Tsai, W. J.; Chen, W. Y.; Lin, C. H. Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation. J. Phys. Chem. C 2010, 114, 4502–4510.

    Article  CAS  Google Scholar 

  56. Zhang, S.; Li, J.; Xia, Z. M.; Wu, C.; Zhang, Z. Y.; Ma, Y. Y.; Qu, Y. Q. Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale 2017, 9, 3140–3149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was sponsored by the National Natural Science Foundation of China (Nos. 21576248, 21671178, and 21901007), Joint project of National Natural Science Foundation of China (No. U1704256), Key scientific research projects of colleges and universities of Henan Province (No. 21A150057) and a research fund from the doctoral program of Zhengzhou University of Light Industry (No. 2014BSJJ007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbo Zhao, Zheng Chen or Shaoming Fang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yuan, H., Yang, G. et al. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res. 15, 1796–1802 (2022). https://doi.org/10.1007/s12274-021-3732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3732-1

Keywords

Navigation