Skip to main content
Log in

Au Nanoparticles Confined in SBA-15 as a Highly Efficient and Stable Catalyst for Hydrogenation of Quinoline to 1,2,3,4-Tetrahydroquinoline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Au nanoparticles confined within the mesopores of the modified SBA-15 were obtained through adsorption-reduction method and firstly employed as chemoselective catalyst for quinoline hydrogenation. The effects of Au loadings, calcination temperature as well as structure of support on catalytic performances of Au catalysts were explored. The as-obtained 1.2%Au@SBA-15-500 catalyst exhibited high activity, excellent selectivity towards 1,2,3,4-tetrahydroquinoline and extraordinary sintering-resistant property as high as 800 °C, which is sharp contrast to the 1.3%Au/SiO2-500 catalyst. It also showed good recyclability and versatility for quinoline derivatives. The observed properties were assigned to small-sized Au nanoparticles and mesopores of SBA-15. Our work provides a facile and promising approach to construct metal nanocatalysts with high catalytic performance by the use of mesoporous materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shuman RT, Ornstein PL, Paschal JW, Gesellchen PD (1990) An improved synthesis of homoproline and derivatives. J Org Chem 55:738–741

    Article  CAS  Google Scholar 

  2. Wang T, Zhuo LG, Li Z, Chen F, Ding Z, He Y, Fan QH, Xiang J, Yu ZX, Chan ASC (2011) Highly enantioselective hydrogenation of quinolines using phosphinefree chiral cationic ruthenium catalysts: scope, mechanism, and origin of Enantioselectivity. J Am Chem Soc 133:9878–9891

    Article  CAS  Google Scholar 

  3. Gong Y, Zhang P, Xu X, Li Y, Li H, Wang Y (2013) A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J Catal 297:272–280

    Article  CAS  Google Scholar 

  4. Alvarado Y, Busolo M, Lopez-Linares F (1999) Regioselective homogeneous hydrogenation of quinoline by use of pyrazolyl borate ligand and transition metal complexes as a precatalyst. J Mol Catal A-Chem 14:2163–2167

    Google Scholar 

  5. Kuwano R, Ikedaa R, Hirasadaa K (2015) Catalytic asymmetric hydrogenation of quinoline carbocycles: unusual chemoselectivity in the hydrogenation of quinolones. Chem Commun 51:7558–7561

    Article  CAS  Google Scholar 

  6. Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH (2011) Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J Am Chem Soc 133:7547–7562

    Article  CAS  Google Scholar 

  7. Zhao D, Candish L, Paul D, Glorius F (2016) N-heterocyclic carbenes in asymmetric hydrogenation. ACS Catal 6:5978–5988

    Article  CAS  Google Scholar 

  8. Sun YP, Fu HY, Zhang DL, Li RX, Chen H, Li XJ (2010) Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst. Catal Commun 12:188–192

    Article  CAS  Google Scholar 

  9. Konnerth H, Prechtl MHG (2017) Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. Green Chem 19:2762–2767

    Article  CAS  Google Scholar 

  10. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA (2017) Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J Am Chem Soc 139:18084–18092

    Article  CAS  Google Scholar 

  11. Dell’Anna MM, Capodiferro VF, Mali M, Manno D, Cotugno P, Monopoli A, Mastrorilli P (2014) Highly selective hydrogenation of quinolines promoted by recyclable polymer supported palladium nanoparticles under mild conditions in aqueous medium. Appl Catal A-Gen 48:89–95

    Article  CAS  Google Scholar 

  12. Zhang S, Xia Z, Ni T, Zhang Z, Ma Y, Qu Y (2018) Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J Catal 359:101–111

    Article  CAS  Google Scholar 

  13. Yu X, Nie R, Zhang H, Lu X, Zhou D, Xia Q (2018) Ordered mesoporous N-doped carbon supported Ru for selective adsorption and hydrogenation of quinoline. Micropor Mesopor Mat 256:10–17

    Article  CAS  Google Scholar 

  14. Chen F, Surkus AE, He L, Pohl MM, Radnik J, Topf C, Junge K, Beller M (2015) Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGr@a-Al2O3). J Am Chem Soc 137:11718–11724

    Article  CAS  Google Scholar 

  15. Wei Z, Chen Y, Wang J, Su D, Tang M, Mao S, Wang Y (2016) Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal 6:5816–5822

    Article  CAS  Google Scholar 

  16. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  17. Liu C, Abroshan H, Yan C, Li G, Haruta M (2016) Ne-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal 6:92–99

    Article  CAS  Google Scholar 

  18. Zhao J, Jin R (2018) Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today 18:86–102

    Article  CAS  Google Scholar 

  19. Zhao J, Li Q, Zhuang S, Song Y, Morris DJ, Zhou M, Wu Z, Zhang P, Jin R (2018) Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J Phys Chem Lett 9:7173–7179

    Article  CAS  Google Scholar 

  20. Zhang L, Zhou M, Wang A, Zhang T (2020) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 120:683–733

    Article  CAS  Google Scholar 

  21. Zhao J, Ge L, Yuan H, Liu Y, Gui YH, Zhang B, Zhou L, Fang S (2019) Heterogeneous gold catalysts for selective hydrogenation: from nanoparticles to atomically precise nanoclusters. Nanoscale 11:11429–11436

    Article  CAS  Google Scholar 

  22. Ren D, He L, Yu L, Ding RS, Liu YM, Cao Y, He HY, Fan KN (2012) An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J Am Chem Soc 134:17592–17598

    Article  CAS  Google Scholar 

  23. Tao L, Zhang Q, Li SS, Liu X, Liu YM, Cao Y (2015) Heterogeneous gold-catalyzed selective reductive transformation of quinolines with formic acid. Adv Synth Catal 357:753–760

    Article  CAS  Google Scholar 

  24. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  25. Xue Y, Yao R, Li J, Wang G, Wu P, Li X (2017) Efficient Pt-FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal Sci Technol 7:6112–6123

    Article  CAS  Google Scholar 

  26. Li X, Fang SSS, Teo J, Foo YL, Borgna A, Lin M, Zhong Z (2012) Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal 2:360–369

    Article  CAS  Google Scholar 

  27. Wang L, Meng X, Wang B, Chi W, Xiao FS (2010) Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols. Chem Commun 46:5003–5005

    Article  CAS  Google Scholar 

  28. Chen L, Hu J, Richards R (2009) Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust "green" catalyst for n-Alkane oxidation. J Am Chem Soc 131:914–915

    Article  CAS  Google Scholar 

  29. Le NH, Hajjar-Garreau S, Bonne M, Megías-Sayago C, Louis B, Lebeau B, Balan L (2020) Photo-induced generation of size controlled Au nanoparticles on pure siliceous ordered mesoporous silica for catalytic applications. Micropor Mesopor Mat 295:109952

    Article  CAS  Google Scholar 

  30. Masoud N, Delannoy L, Calers C, Gallet JJ, Bourn F, de Jong KP, Louis C, de Jongh PE (2017) Silica-supported Au–Ag catalysts for the selective hydrogenation of butadiene. ChemCatChem 9:2418–2425

    Article  CAS  Google Scholar 

  31. Zhao J, Gui Y, Liu Y, Wang G, Zhang H, Sun Y, Fang S (2017) Highly efficient and magnetically recyclable Pt catalysts for hydrosilylation reactions. Catal Lett 147:1127–1132

    Article  CAS  Google Scholar 

  32. Enumula SS, Koppadi KS, Gurram VRB, Burria DR, Kamaraju SRR (2017) Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. Sustain Energy Fuels 1:644–651

    Article  CAS  Google Scholar 

  33. Wang L, Kong A, Chen B, Ding H, Shan Y, He M (2005) Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. J Mol Catal A Chem 230:143–150

    Article  CAS  Google Scholar 

  34. Liu X, Wang A, Yang X, Zhang T, Mou CY, Su DS, Li J (2009) Synthesis of thermally stable and highly active bimetallic Au–Ag nanoparticles on inert supports. Chem Mater 21:410–418

    Article  CAS  Google Scholar 

  35. Park ED, Lee JS (1999) Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J Catal 186:1–11

    Article  CAS  Google Scholar 

  36. Zhao J, Yu G, Xin K, Li L, Fu T, Cui Y, Liu H, Xue N, Peng L, Ding W (2014) Highly active gold catalysts loaded on NiAl-oxide derived from layered double hydroxide for aerobic alcohol oxidation. Appl Catal A-Gen 482:294–299

    Article  CAS  Google Scholar 

  37. Boronat M, Illas F, Corma A (2009) Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. J Phys Chem A 113:3750–3757

    Article  CAS  Google Scholar 

  38. Bore MT, Pham HN, Switzer EE, Ward TL, Fukuoka A, Datye AK (2005) The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica. J Phys Chem B 109:2873–2880

    Article  CAS  Google Scholar 

  39. Wang S, Zhao Q, Wei H, Wang JQ, Cho M, Cho HS, Terasaki O, Wan Y (2013) Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J Am Chem Soc 135:11849–11860

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21576248, 21671178 and 21571159) and a research fund from the doctoral program of Zhengzhou University of Light Industry (Grant No. 2014BSJJ007). The authors honestly thank Yongfa Zhu in Tsinghua University for good advices about XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbo Zhao, Liming Zhou or Shaoming Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yuan, H., Qin, X. et al. Au Nanoparticles Confined in SBA-15 as a Highly Efficient and Stable Catalyst for Hydrogenation of Quinoline to 1,2,3,4-Tetrahydroquinoline. Catal Lett 150, 2841–2849 (2020). https://doi.org/10.1007/s10562-020-03190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03190-3

Keywords

Navigation