Skip to main content
Log in

β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Support materials play a significant role in heterogeneous nanocatalysis. In this work, β-cyclodextrin (β-CD) was used directly as a monomer to construct polymer networks for gold nanoparticles (Au NPs) immobilization. Using the simple nucleophilic substitution reaction, β-CD based polymer networks (β-CDP-N and β-CDP-C) were successfully prepared. Compared to β-CDP-C, the hydroxyl groups and N atoms in β-CDP-N played a synergistic role in immobilizing smaller Au NPs, thus leading to high catalytic activities. Notably, the apparent rate constant (Kapp) value for Au@ β-CDP-N in the reduction of 4-nitrophenol to 4-aminophenol is 14.15 × 10−2 s−1, which shows a significant improvement over all previously reported Au NPs with solid supports under similar conditions. Considering the negligible porosity of the β-CDP-N support, we purposed a “capture-catalysis-release” model to explain the high catalytic activity of Au@ β-CDP-N. This explanation is supported by the guest-responsive properties of β-CDP-N. Moreover, the Au@ β-CDP-N is easily recycled and maintained its high catalytic efficiency after seven successful cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, E.; Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812–821.

    CAS  Google Scholar 

  2. Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746–2762.

    CAS  Google Scholar 

  3. Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805.

    CAS  Google Scholar 

  4. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  5. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    CAS  Google Scholar 

  6. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. R.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater, in press, DOI: https://doi.org/10.1007/s40843-020-1443-8

  7. Zahmakiran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462–3481.

    CAS  Google Scholar 

  8. Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.

    CAS  Google Scholar 

  9. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494.

    CAS  Google Scholar 

  10. Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 2016, 312, 99–148.

    CAS  Google Scholar 

  11. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Google Scholar 

  12. Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.

    CAS  Google Scholar 

  13. Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 250–254.

    CAS  Google Scholar 

  14. Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. S. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880–7883.

    CAS  Google Scholar 

  15. Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal. 2017, 7, 2896–2919.

    CAS  Google Scholar 

  16. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    CAS  Google Scholar 

  17. Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.

    Google Scholar 

  18. Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

    CAS  Google Scholar 

  19. Zhang, Y. G.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083–2094.

    CAS  Google Scholar 

  20. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    CAS  Google Scholar 

  21. Lee, J. S. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171–2214.

    CAS  Google Scholar 

  22. Cram, D. J.; Cram, J. M. Host-guest chemistry. Science 1974, 183, 803–809.

    CAS  Google Scholar 

  23. Petsko, G. A.; Ringe, D. Protein Structure and Function; New Science Press: Sunderland, MA, 2004.

    Google Scholar 

  24. Zhang, X. Y.; Houk, K. N. Why enzymes are proficient catalysts: Beyond the Pauling paradigm. Acc. Chem. Res. 2005, 38, 379–385.

    CAS  Google Scholar 

  25. Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Supramolecular catalysis in metal-ligand cluster hosts. Chem. Rev. 2015, 115, 3012–3035.

    CAS  Google Scholar 

  26. Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447–2455.

    CAS  Google Scholar 

  27. Assaf, K. I.; Nau, W. M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394–418.

    CAS  Google Scholar 

  28. Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615–621.

    CAS  Google Scholar 

  29. Xia, D. Y.; Wang, P.; Ji, X. F.; Khashab, N. M.; Sessler, J. L.; Huang, F. H. Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070–6123.

    CAS  Google Scholar 

  30. Alsbaiee, A.; Smith, B. J.; Xiao, L. L.; Ling, Y. H.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194.

    CAS  Google Scholar 

  31. Li, H. Y.; Meng, B.; Chai, S. H.; Liu, H. L.; Dai, S. Hyper-crosslinked β-cyclodextrin porous polymer: An adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem. Sci. 2016, 7, 905–909.

    CAS  Google Scholar 

  32. Talapaneni, S. N.; Kim, D.; Barin, G.; Buyukcakir, O.; Je, S. H.; Coskun, A. Pillar[5]arene based conjugated microporous polymers for propane/methane separation through host-guest complexation. Chem. Mater. 2016, 28, 4460–4466.

    CAS  Google Scholar 

  33. Shetty, D.; Jahovic, I.; Raya, J.; Ravaux, F.; Jouiad, M.; Olsen, J. C.; Trabolsi, A. An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. J. Mater. Chem. A 2017, 5, 62–66.

    CAS  Google Scholar 

  34. Su, K. Z.; Wang, W. J.; Li, B. B.; Yuan, D. Q. Azo-bridged calix[4] resorcinarene-based porous organic frameworks with highly efficient enrichment of volatile iodine. ACS Sustainable Chem. Eng. 2018, 6, 17402–17409.

    CAS  Google Scholar 

  35. Yang, H. S.; Du, Y.; Wan, S.; Trahan, G. D.; Jin, Y. H.; Zhang, W. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chem. Sci. 2015, 6, 4049–4053.

    CAS  Google Scholar 

  36. Giri, A.; Hussain, W.; SK, B.; Patra, A. Connecting the dots: Knitting C-phenylresorcin[4] arenes with aromatic linkers for task-specific porous organic polymers. Chem. Mater. 2019, 31, 8440–8450.

    CAS  Google Scholar 

  37. Skala, L. P.; Yang, A. N.; Klemes, M. J.; Xiao, L. L.; Dichtel, W. R. Resorcinarene cavitand polymers for the remediation of halomethanes and 1,4-dioxane. J. Am. Chem. Soc. 2019, 141, 13315–13319.

    CAS  Google Scholar 

  38. Gong, W.; Wu, Q. Q.; Jiang, G. X.; Li, G. J. Ultrafine silver nanoparticles supported on a covalent carbazole framework as high-efficiency nanocatalysts for nitrophenol reduction. J. Mater. Chem. A 2019, 7, 13449–13454.

    CAS  Google Scholar 

  39. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754.

    CAS  Google Scholar 

  40. Hedges, A. R. Industrial applications of cyclodextrins. Chem. Rev. 1998, 98, 2035–2044.

    CAS  Google Scholar 

  41. Del Valle, E. M. M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046.

    CAS  Google Scholar 

  42. Szaniszló, N.; Fenyvesi, É.; Balla, J. Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 241–248.

    Google Scholar 

  43. Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, J. A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

    CAS  Google Scholar 

  44. Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126.

    CAS  Google Scholar 

  45. Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    CAS  Google Scholar 

  46. Yue, Q.; Zhang, Y.; Wang, C.; Wang, X. Q.; Sun, Z. K.; Hou, X. F.; Zhao, D. Y.; Deng, Y. H. Magnetic yolk-shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J. Mater. Chem. A 2015, 3, 4586–4594.

    CAS  Google Scholar 

  47. Zhang, P.; Chen, C. J.; Kang, X. C.; Zhang, L. J.; Wu, C. Y.; Zhang, J. L.; Han, B. X. In situ synthesis of sub-nanometer metal particles on hierarchically porous metal-organic frameworks via interfacial control for highly efficient catalysis. Chem. Sci. 2018, 9, 1339–1343.

    CAS  Google Scholar 

  48. Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem. Int. Ed. 2008, 47, 9265–9268.

    CAS  Google Scholar 

  49. He, J.; Razzaque, S.; Jin, S. B.; Hussain, I.; Tan, B. E. Efficient synthesis of ultrafine gold nanoparticles with tunable sizes in a hyper-cross-linked polymer for nitrophenol reduction. ACS Appl. Nano Mater. 2019, 2, 546–553.

    CAS  Google Scholar 

  50. Wang, J.; Liu, A. H.; Li, M. R.; Zhang, W. P.; Chen, Y. S.; Tian, D. X.; Li, W. C. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano 2013, 7, 4902–4910.

    CAS  Google Scholar 

  51. Huang, Y.; Fang, Y.; Chen, L. Y.; Lu, A.; Zhang, L. N. One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chem. Eng. J. 2017, 315, 573–582.

    CAS  Google Scholar 

  52. Ezhil Vilian, A. T.; Sivakumar, R.; Huh, Y. S.; Youk, J. H.; Han, Y. K. Palladium supported on an amphiphilic triazine-urea-functionalized porous organic polymer as a highly efficient electrocatalyst for electrochemical sensing of rutin in human plasma. ACS Appl. Mater. Interfaces 2018, 10, 19554–19563.

    Google Scholar 

  53. Zhou, C. Y.; Lai, C.; Huang, D. L.; Zeng, G. M.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Xiong, W. P.; Wen, M. et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal. B Environ. 2018, 220, 202–210.

    CAS  Google Scholar 

  54. Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587.

    Google Scholar 

  55. Liao, G. F.; Gong, Y.; Zhong, L.; Fang, J. S.; Zhang, L.; Xu, Z. S.; Gao, H. Y.; Fang, B. Z. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 2019, 12, 2407–2436.

    CAS  Google Scholar 

  56. Yang, Y. T.; Wang, T. N.; Jing, X. F.; Zhu, G. S. Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. J. Mater. Chem. A 2019, 7, 10004–10009.

    CAS  Google Scholar 

  57. Fu, Y. K.; Qin, L.; Huang, D. L.; Zeng, G. M.; Lai, C.; Li, B. S.; He, J. F.; Yi, H.; Zhang, M. M.; Cheng, M. et al. Chitosan functionalized activated coke for Au nanoparticles anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl. Catal. B Environ. 2019, 255, 117740.

    CAS  Google Scholar 

  58. Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

    CAS  Google Scholar 

  59. Nguyen, T. B.; Huang, C. P.; Doong, R. A. Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B Environ. 2019, 240, 337–347.

    CAS  Google Scholar 

  60. Fu, H. X.; Zhang, Z. H.; Fan, W. H.; Wang, S. F.; Liu, Y.; Huang, M. H. A soluble porous organic polymer for highly efficient organic-aqueous biphasic catalysis and convenient reuse of catalysts. J. Mater. Chem. A 2019, 7, 15048–15053.

    CAS  Google Scholar 

  61. Huang, P. T.; Chen, Y. N.; Chen, K. C.; Wu, S. H.; Liu, C. P. Confinement of silver nanoparticles in polystyrenes through molecular entanglements and their application for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2019, 7, 20919–20925.

    CAS  Google Scholar 

  62. An, P.; Anumula, R.; Cui, C. N.; Liu, Y.; Zhan, F.; Tao, Y.; Luo, Z. X. A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol. Nano Res. 2019, 12, 2589–2596.

    CAS  Google Scholar 

  63. Wu, K.; Wang, X. Y.; Guo, L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y. W.; Sun, L. D. et al. Facile synthesis of Au embedded CuO,-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044–2055.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21865003 and 21562003), China Postdoctoral Science Foundation (No. 2018M640114), National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201910418003) and the Gannan Normal University Innovation Fund (No. YCX19A002) for generous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or San-Yuan Ding.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, B., Cao, XM. et al. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 14, 1018–1025 (2021). https://doi.org/10.1007/s12274-020-3144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3144-7

Keywords

Navigation