Skip to main content
Log in

Engineering the interface of Au nanocatalysts with FeOx for enhanced selective hydrogenation of cinnamaldehyde

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Engineering the interface plays a vital role in tuning the catalytic properties of supported metal nanocatalysts. Herein the 0.73%Au-4.13%FeOx@SBA-15 catalyst was constructed with SBA-15 as support and FeOx as modifier by interface engineering. It exhibited better catalytic activity than 0.71%Au/SiO2, 0.69%Au@SBA-15 and 0.71%Au/bulk-FeOx under identical conditions as well as higher selectivity towards cinnamyl alcohol for selective hydrogenation of cinnamaldehyde. It was found that the introduction of FeOx fabricated the interfacial area between Au and FeOx for H2 dissociation and consequently led to higher catalytic activity of 0.73%Au-4.13%FeOx@SBA-15. Meanwhile, both the channel of the SBA-15 support and the presence of small-sized FeOx promoted the selectivity for hydrogenation of C = O bond. It demonstrated for the first time that the interface engineering provided an efficient and facile avenue to design Au catalysts of excellent performances for selective hydrogenations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhao J, Jin R (2018) Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today 18:86–102

    Article  CAS  Google Scholar 

  2. Zhang L, Zhou M, Wang A, Zhang T (2020) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 120(2):683–733

    Article  CAS  Google Scholar 

  3. Lan X, Wang T (2020) Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catal 10(4):2764–2790

    Article  CAS  Google Scholar 

  4. Taniya K, Jinno H, Kishida M, Ichihashi Y, Nishiyama S (2012) Preparation of Sn-modified silica-coated Pt catalysts: a new PtSn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. J Catal 288:84–91

    Article  CAS  Google Scholar 

  5. Zhao J, Li Q, Zhuang S, Song Y, Morris D, Zhou M, Wu Z, Zhang P, Jin R (2018) Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J Phys Chem Lett 9:7173–7179

    Article  CAS  Google Scholar 

  6. Zhao J, Ge L, Yuan H, Liu Y, Gui Y, Zhang B, Zhou L, Fang S (2019) Heterogeneous gold catalysts for selective hydrogenation: from nanoparticles to atomically precise nanoclusters. Nanoscale 11:11429–11436

    Article  CAS  Google Scholar 

  7. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  8. Wu K, Wang XY, Guo LL, Xu YJi, Zhou L, Lyu ZY, Liu KY, Si R, Zhang YW, Sun LD, Yan CH, (2020) Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Research 13:2044–2055

    Article  CAS  Google Scholar 

  9. Cattaneo S, Freakley SJ, Morgan DJ, Sankar M, Dimitratos N, Hutchings GJ (2018) Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilization. Catal Sci Technol 8:1677–1685

    Article  CAS  Google Scholar 

  10. Zhu M, Du X, Zhao Y, Mei B, Zhang Q, Sun F, Jiang Z, Liu Y, He H, Cao Y (2019) Ring-opening transformation of 5-hydroxymethylfurfural using a golden single-atomic-site palladium catalyst. ACS Catal 9:6212–6222

    Article  CAS  Google Scholar 

  11. Zhao J, Liu H, Ye S, Cui Y, Xue N, Peng L, Guo X, Ding W (2013) Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale 5:9546–9552

    Article  CAS  Google Scholar 

  12. Guo H, Yan X, Zhi Y, Li Z, Wu C, Zhao C, Wang J, Yu Z, Ding Y, He W, Li Y (2015) Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Research 8:1365–1372

    Article  CAS  Google Scholar 

  13. Bus E, Miller JT, Avan BJ (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587

    Article  CAS  Google Scholar 

  14. Boronat M, Illas F, Corma A (2009) Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. J Phys Chem A 113:3750–3757

    Article  CAS  Google Scholar 

  15. Ohyama J, Hayashi Y, Ueda K, Yamamoto Y, Arai S, Satsuma A (2016) Effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-hydroxymethylfurfural. J Phys Chem C 120:15129–15136

    Article  CAS  Google Scholar 

  16. Zhao J, Yuan H, Li J, Bing W, Yang W, Liu Y, Chen J, Wei C, Zhou L, Fang S (2020) Effects of preparation parameters of NiAl oxide-supported Au catalysts on nitro compounds chemoselective hydrogenation. ACS Omega 5:7011–7017

    Article  CAS  Google Scholar 

  17. Whittaker T, Kumar KBS, Peterson C, Pollock MN, Grabow LC, Chandler BD (2018) H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal-support interface. J Am Chem Soc 140:16469–16487

    Article  CAS  Google Scholar 

  18. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48:9515–9518

    Article  CAS  Google Scholar 

  19. Shao Z, Zhang L, Liu H, Cao X, Hu P (2019) Enhanced interfacial H2 activation for nitrostyrene catalytic hydrogenation over rutile titania-supported gold by coadsorption: a first-principles microkinetic simulation study. ACS Catal 9:11288–11301

    Article  CAS  Google Scholar 

  20. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279:548–552

    Article  CAS  Google Scholar 

  21. Gao D, Zhang X, Dai X, Qin Y, Duan A, Yu Y, Zhuo H, Zhao H, Zhang P, Jiang Y, Li J, Zhao, (2016) Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Research 9:3099–3115

    Article  CAS  Google Scholar 

  22. Zhao J, Yuan H, Qin X, Tian K, Liu Y, Zhang Z, Zhou L, Fang S (2020) Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1,2,3,4-Tetrahydroquinoline. Catal Lett 150:2841–2849

    Article  CAS  Google Scholar 

  23. Zhao J, Gui Y, Liu Y, Wang G, Zhang H, Sun Y, Fang S (2017) Highly efficient and magnetically recyclable Pt catalysts for hydrosilylation reactions. Catal Lett 147:1127–1132

    Article  CAS  Google Scholar 

  24. Le N, Hajjar-Garreau S, Bonne M, Megias-Sayago C, Louis B, Lebeau B, Balan L (2020) Photo-induced generation of size controlled Au nanoparticles on pure siliceous ordered mesoporous silica for catalytic applications. Micropor Mesopor Mat 295:109952

    Article  CAS  Google Scholar 

  25. Enumula SS, Koppadi KS, Gurram VRB, Burri DR, Kamaraju SRR (2017) Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. Sustain Energy Fuels 1:644–651

    Article  CAS  Google Scholar 

  26. Masoud N, Delannoy L, Calers C (2017) Silica-supported Au-Ag catalysts for the selective hydrogenation of butadiene. Chemcatchem 9:2418–2425

    Article  CAS  Google Scholar 

  27. Nava R, Ortega RA, Alonso G, Ornelas C, Pawelec B, Fierro JLG (2007) CoMo/Ti-SBA-15 catalysts for dibenzothiophene desulfurization. Catal Today 127:70–84

    Article  CAS  Google Scholar 

  28. Wang C, Yin H, Dai S, Sun S (2010) A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater 22:3277–3282

    Article  CAS  Google Scholar 

  29. Liu X, Wang A, Li L, Zhang T, Mou CY, Lee JF (2011) Structural changes of Au-Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278:288–296

    Article  CAS  Google Scholar 

  30. Ma G, Binder A, Chi M, Liu C, Jin R, Jiang D, Fan J, Dai S (2012) Stabilizing gold clusters by heterostructured transition-metal oxide-mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chem Commun 48:11413–11415

    Article  CAS  Google Scholar 

  31. Zhao J, Yu G, Xin K, Li L, Fu T, Cui Y, Liu H, Xue N, Peng L, Ding W (2014) Highly active gold catalysts loaded on NiAl-oxide derived from layered double hydroxide for aerobic alcohol oxidation. Appl Catal A-Gen 482:294–299

    Article  CAS  Google Scholar 

  32. Gómez-Quero S, Cárdenas-Lizana F, Keane MA (2013) Unique selectivity in the hydrodechlorination of 2, 4-dichlorophenol over hematite-supported Au. J Catal 303:41–49

    Article  CAS  Google Scholar 

  33. Khoudiakov M, Gupta MC, Deevi S (2005) Au/Fe2O3 nanocatalysts for CO oxidation: a comparative study of deposition-precipitation and coprecipitation techniques. Appl Catal A 291:151–161

    Article  CAS  Google Scholar 

  34. Zhao J, Fu T, Li L, Ding W (2014) Synthesis, Characterizations and catalytic performance of nanostructure Au/Fe2O3. Chinese J Inorg Chem 30:1489–1495

    CAS  Google Scholar 

  35. Neri G, Visco AM, Galvagno S, Panzalorto M (1999) Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochim Acta 329:39–46

    Article  CAS  Google Scholar 

  36. Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S (2005) Selective hydrogenation of α, β -unsaturated ketone to α, β -unsaturated alcohol on gold-supported iron oxide catalysts: role of the support. J Catal 236:80–90

    Article  CAS  Google Scholar 

  37. Milone C, Ingoglia R, Tropeano ML, Neri G, Galvagno S (2003) First Example of selective hydrogenation of unconstrained α, β-Unsaturated ketone to α, β-Unsaturated alcohol by molecular hydrogen. Chem Commun 7:868–869

    Article  CAS  Google Scholar 

  38. Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S (2004) Selective hydrogenation of α, β-unsaturated ketones to α, β-unsaturated alcohols on gold-supported catalysts. J Catal 222:348–356

    Article  CAS  Google Scholar 

  39. Centomo P, Zecca M, Noto VD, Lavina S, Bombi GG, Nodari L, Salviulo G, Ingoglia R, Milone C, Galvagno S, Corain B (2010) Characterization of synthetic Iron oxides and their performance as support for Au catalysts. ChemCatChem 2:1143–1149

    Article  CAS  Google Scholar 

  40. Yan T, Redman DW, Yu WY, Flaherty DW, Rodriguez JA, Mullins CB (2012) CO oxidation on inverse Fe2O3/Au model catalysts. J Catal 294:216–222

    Article  CAS  Google Scholar 

  41. Xu X, Fu Q, Guo X, Bao X (2013) A highly active “NiO-on-Au” surface architecture for CO oxidation. ACS Catal 3:1810–1818

    Article  CAS  Google Scholar 

  42. Ha H, Yoon S, An K, Kim HY (2018) Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: effect of the Au-CeO2 Interface. ACS Catal 8:11491–11501

    Article  CAS  Google Scholar 

  43. Zhang X, Wang H, Xu BQ (2005) Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J Phys Chem B 109:9678–9683

    Article  CAS  Google Scholar 

  44. Kang Y, Ye X, Chen J, Qi L, Diaz RE, Doan-Nguyen V, Xing G, Kagan CR, Li J, Gorte RJ, Stach EA, Murray CB (2013) Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc 135:1499–1505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was sponsored by the National Natural Science Foundation of China (21576248 and 21671178), Key scientific research projects of colleges and universities of Henan Province (21A150057), Joint project of National Natural Science Foundation of China (U1704256) and a research fund from the doctoral program of Zhengzhou University of Light Industry (2014BSJJ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yuan, H., Gui, Y. et al. Engineering the interface of Au nanocatalysts with FeOx for enhanced selective hydrogenation of cinnamaldehyde. J Mater Sci 56, 5760–5771 (2021). https://doi.org/10.1007/s10853-020-05634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05634-y

Navigation