Skip to main content
Log in

Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) have achieved great success in the field of heterogeneous catalysis, however, it’s still challenging to design MOF catalysts with enhanced selectivity. Here, we demonstrated a combination strategy of metal design and ligand design on the enantioselectivity—that is the enantioselectivities of chiral MOF (CMOF) catalysts could be significantly enhanced by the rational choice of metal ions with higher electronegativities and introducing sterically demanding groups into the ligands. Four isostructural Ca-, Sr- and Zn-based CMOFs were prepared from enantiopure phosphono-carboxylate ligands of 1,1′-biphenol that are functionalized with 2,4,6-trimethyl- and 2,4,6-trifluoro-phenyl groups at the 3,3’-position. The uniformly distributed metal phosphonates along the channels could act as Lewis acids and catalyze the asymmetric transfer hydrogenation of heteroaromatic imines (benzoxazines and quinolines). Particularly, the Ca-based MOF 1 with 2,4,6-trimethyl groups at the substituents exhibited enhanced catalytic performance, affording the highest enantioselectivity (up to 97%). It is also the first report of the heterogeneous catalyst with chiral non-noble metal phosphonate active sites for asymmetric transfer hydrogenation reactions with Hantzsch ester as the hydrogen source. The catalyst design strategy demonstrated here is expected to develop new types of chiral materials for asymmetric catalysis and other chiral applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, F.; Guo, Y. H. Advancements in solid acid catalysts for biodiesel production. Green Chem.2014, 16, 2934–2957.

    CAS  Google Scholar 

  2. Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater.2017, 29, 1701139.

    Google Scholar 

  3. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev.2015, 44, 6804–6849.

    CAS  Google Scholar 

  4. Yadav, A.; Kanoo, P. Metal-organic frameworks as platform for Lewis-acid-catalyzed organic transformations. Chem.—Asian J.2019, 14, 3531–3551.

    CAS  Google Scholar 

  5. Wang, C.; Liu, D. M.; Lin, W. B. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc.2013, 135, 13222–13234.

    CAS  Google Scholar 

  6. Chen, X.; Peng, Y. W.; Han, X.; Liu, Y.; Lin, X. C.; Cui, Y. Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat. Commun.2017, 8, 2171.

    Google Scholar 

  7. Chen, X.; Jiang, H.; Hou, B.; Gong, W.; Liu, Y.; Cui, Y. Boosting chemical stability, catalytic activity and enantioselectivity of metal-organic frameworks for batch and flow reactions. J. Am. Chem. Soc.2017, 139, 13476–13482.

    CAS  Google Scholar 

  8. Chen, X.; Jiang, H.; Li, X.; Hou, B.; Gong, W.; Wu, X. W.; Han, X.; Zheng, F. F.; Liu, Y.; Jiang, J. W. et al. Chiral phosphoric acids in metal-organic frameworks with enhanced acidity and tunable catalytic selectivity. Angew. Chem., Int. Ed.2019, 58, 14748–14757.

    CAS  Google Scholar 

  9. Li, Z. Y.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C. W.; Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J. T. et al. Fine-tuning the activity of metal-organic framework-supported cobalt catalysts for the oxidative dehydrogenation of propane. J. Am. Chem. Soc.2017, 139, 15251–15258.

    CAS  Google Scholar 

  10. Huang, N.; Yuan, S.; Drake, H.; Yang, X. Y.; Pang, J. D.; Qin, J. S.; Li, J. L.; Zhang, Y. M.; Wang, Q.; Jiang, D. L. et al. Systematic engineering of single substitution in zirconium metal-organic frameworks toward high-performance catalysis. J. Am. Chem. Soc.2017, 139, 18590–18597.

    CAS  Google Scholar 

  11. Johnson, J. A.; Petersen, B. M.; Kormos, A.; Echeverría, E.; Chen, Y. S.; Zhang, J. A new approach to non-coordinating anions: Lewis acid enhancement of porphyrin metal centers in a zwitterionic metal-organic framework. J. Am. Chem. Soc.2016, 138, 10293–10298.

    CAS  Google Scholar 

  12. Dubey, R. J. C.; Comito, R. J.; Wu, Z. W.; Zhang, G. H.; Rieth, A. J.; Hendon, C. H.; Miller, J. T.; Dinca, M. Highly stereoselective heterogeneous diene polymerization by Co-MFU-4l: A single-site catalyst prepared by cation exchange. J. Am. Chem. Soc.2017, 139, 12664–12669.

    CAS  Google Scholar 

  13. Gedrich, K.; Heitbaum, M.; Notzon, A.; Senkovska, I.; Fröhlich, R.; Getzschmann, J.; Mueller, U.; Glorius, F.; Kaskel, S. A family of chiral metal-organic frameworks. Chem.—Eur. J.2011, 17, 2099–2106.

    CAS  Google Scholar 

  14. Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem.2010, 2, 838–846.

    CAS  Google Scholar 

  15. Tan, C. X.; Han, X.; Li, Z. J.; Liu, Y.; Cui, Y. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal-organic framework. J. Am. Chem. Soc.2018, 140, 16229–16236.

    CAS  Google Scholar 

  16. Gong, W.; Chen, X.; Jiang, H.; Chu, D. D.; Cui, Y.; Liu, Y. Highly stable Zr(IV)-based metal-organic frameworks with chiral phosphoric acids for catalytic asymmetric tandem reactions. J. Am. Chem. Soc.2019, 141, 7498–7508.

    CAS  Google Scholar 

  17. Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. J. Am. Chem. Soc.2009, 131, 7524–7525.

    CAS  Google Scholar 

  18. Falkowski, J. M.; Sawano, T.; Zhang, T.; Tsun, G.; Chen, Y.; Lockard, J. V.; Lin, W. B. Privileged phosphine-based metal-organic frameworks for broad-scope asymmetric catalysis. J. Am. Chem. Soc.2014, 136, 5213–5216.

    CAS  Google Scholar 

  19. Ji, P. F.; Feng, X. Y.; Oliveres, P.; Li, Z.; Murakami, A.; Wang, C.; Lin, W. B. Strongly Lewis acidic metal-organic frameworks for continuous flow catalysis. J. Am. Chem. Soc.2019, 141, 14878–14888.

    CAS  Google Scholar 

  20. Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc.2018, 140, 10553–10561.

    CAS  Google Scholar 

  21. Zhang, Y.; Guo, J.; Shi, L.; Zhu, Y. F.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Tunable chiral metal organic frameworks toward visible light-driven asymmetric catalysis. Sci. Adv.2017, 3, e1701162.

    Google Scholar 

  22. Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: History and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev.2014, 114, 9047–9153.

    CAS  Google Scholar 

  23. Parra, A.; Reboredo, S.; Castro, A. M. M.; Alemán, J. Metallic organophosphates as catalysts in asymmetric synthesis: A return journey. Org. Biomol. Chem.2012, 10, 5001–5020.

    CAS  Google Scholar 

  24. Foubelo, F.; Yus, M. Catalytic asymmetric transfer hydrogenation of imines: Recent advances. Chem. Rec.2015, 15, 907–924.

    CAS  Google Scholar 

  25. Zheng, C.; You, S. L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem. Soc. Rev.2012, 41, 2498–2518.

    CAS  Google Scholar 

  26. Rueping, M.; Antonchick, A. P.; Theissmann, T. Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. Angew. Chem., Int. Ed.2006, 45, 6751–6755.

    CAS  Google Scholar 

  27. Zhang, Y. L.; Zhao, R.; Bao, R. L. Y.; Shi, L. Highly enantioselective SPINOL-derived phosphoric acid catalyzed transfer hydrogenation of diverse C=N-containing heterocycles. Eur. J. Org. Chem.2015, 2015, 3344–3351.

    CAS  Google Scholar 

  28. Tu, X. F.; Gong, L. Z. Highly enantioselective transfer hydrogenation of quinolines catalyzed by gold phosphates: Achiral ligand tuning and chiral-anion control of stereoselectivity. Angew. Chem., Int. Ed.2012, 51, 11346–11349.

    CAS  Google Scholar 

  29. Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. A chiral microporous polymer network as asymmetric heterogeneous organocatalyst. Adv. Synth. Catal.2011, 353, 3101–3106.

    CAS  Google Scholar 

  30. Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S. A microporous binol-derived phosphoric acid. Angew. Chem., Int. Ed.2012, 51, 5456–5459.

    CAS  Google Scholar 

  31. Zhang, Z. X.; Ji, Y. R.; Wojtas, L.; Gao, W. Y.; Ma, S. Q.; Zaworotko, M. J.; Antilla, J. C. Two homochiral organocatalytic metal organic materials with nanoscopic channels. Chem. Commun.2013, 49, 7693–7695.

    CAS  Google Scholar 

  32. Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev.2011, 111, 1713–1760.

    CAS  Google Scholar 

  33. Arai, N.; Saruwatari, Y.; Isobe, K.; Ohkuma, T. Asymmetric hydrogenation of quinoxalines, benzoxazines, and a benzothiazine catalyzed by chiral ruthenabicyclic complexes. Adv. Synth. Catal.2013, 355, 2769–2774.

    CAS  Google Scholar 

  34. Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. pH-regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem., Int. Ed.2009, 48, 6524–6528.

    CAS  Google Scholar 

  35. Núñez-Rico, J. L.; Vidal-Ferran, A. [Ir(P-OP)]-catalyzed asymmetric hydrogenation of diversely substituted C=N-containing heterocycles. Org. Lett.2013, 15, 2066–2069.

    Google Scholar 

  36. Fleischer, S.; Zhou, S. L.; Werkmeister, S.; Junge, K.; Beller, M. Cooperative iron-Brønsted acid catalysis: Enantioselective hydrogenation of quinoxalines and 2H-1,4-benzoxazines. Chem.—Eur. J.2013, 19, 4997–5003.

    CAS  Google Scholar 

  37. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst.2003, 36, 7–13.

    CAS  Google Scholar 

  38. Chen, Z. P.; Zhou, Y. G. Asymmetric hydrogenation of heteroarenes with multiple heteroatoms. Synthesis2016, 48, 1769–1781.

    CAS  Google Scholar 

  39. Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Keßeler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem., Int. Ed.2004, 43, 788–824.

    CAS  Google Scholar 

  40. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem.2014, 57, 10257–10274.

    CAS  Google Scholar 

  41. Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem.1988, 27, 734–740.

    CAS  Google Scholar 

  42. Chen, S. M.; Wang, H. X.; Li, Z. J.; Wei, F. L.; Zhu, H.; Xu, S. Q.; Xu, J. X.; Liu, J. J.; Gebru, H.; Guo, K. Metallic organophosphate catalyzed bulk ring-opening polymerization. Polym. Chem.2018, 9, 732–742.

    CAS  Google Scholar 

  43. Wang, J.; Chen, M. W.; Ji, Y.; Hu, S. B.; Zhou, Y. G. Kinetic resolution of axially chiral 5- or 8-substituted quinolines via asymmetric transfer hydrogenation. J. Am. Chem. Soc.2016, 138, 10413–10416.

    CAS  Google Scholar 

  44. Zhao, D. B.; Glorius, F. Enantioselective hydrogenation of isoquinolines. Angew. Chem., Int. Ed.2013, 52, 9616–9618.

    CAS  Google Scholar 

  45. Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. Highly enantioselective electrophilic α-bromination of enecarbamates: Chiral phosphoric acid and calcium phosphate salt catalysts. J. Am. Chem. Soc.2012, 134, 10389–10392.

    CAS  Google Scholar 

  46. Ibáñez, I.; Kaneko, M.; Kamei, Y.; Tsutsumi, R.; Yamanaka, M.; Akiyama, T. Enantioselective friedel-crafts alkylation reaction of indoles with α-trifluoromethylated β-nitrostyrenes catalyzed by chiral BINOL metal phosphate. ACS Catal.2019, 9, 6903–6909.

    Google Scholar 

  47. Lalli, C.; Dumoulin, A.; Lebée, C.; Drouet, F.; Guérineau, V.; Touboul, D.; Gandon, V.; Zhu, J. P.; Masson, G. Chiral calcium-BINOL phosphate catalyzed diastereo- and enantioselective synthesis of syn-1,2-disubstituted 1,2-diamines: Scope and mechanistic studies. Chem.—Eur. J.2015, 21, 1704–1712.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 91956124, 21875136, 21620102001, 91856204, 21978058 and 21676094), the National Key Basic Research Program of China (No. 2016YFA0203400), Key Project of Basic Research of Shanghai (Nos. 17JC1403100, 18JC1413200 and 19JC1412600) and Shanghai Rising-Star Program (No. 19QA1404300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Qiao, Z., Hou, B. et al. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res. 14, 466–472 (2021). https://doi.org/10.1007/s12274-020-2905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2905-7

Keywords

Navigation