Skip to main content

Advertisement

Log in

Synthetic Biology in Plants, a Boon for Coming Decades

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is ‘Synthetic Biology’ (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nemhauser, J. L., & Torii, K. U. (2016). Plant synthetic biology for molecular engineering of signaling and development. Nature Plants, 2, 16010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meyer, A., Pellaux, R., & Panke, S. (2007). Bioengineering novel in vitro metabolic pathways using synthetic biology. Current Opinion in Microbiology, 10, 246–253.

    Article  CAS  PubMed  Google Scholar 

  3. Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 14, 189–195.

    Article  CAS  PubMed  Google Scholar 

  4. Paddon, C. J., & Keasling, J. D. (2014). Semi-synthetic artemisinin: A model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology, 12, 355–367.

    Article  CAS  PubMed  Google Scholar 

  5. Clomburg, J. M., & Gonzalez, R. (2010). Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 86, 419–434.

    Article  CAS  PubMed  Google Scholar 

  6. French, C. E., de Mora, K., Joshi, N., Elfick, A., Haseloff, J., & Ajioka, J. (2011). Synthetic biology and the art of biosensor design. In The science and applications of synthetic and systems biology: Workshop summary (pp. 178–201). Washington DC: National Academies Press.

  7. Medford, J. I., & Prasad, A. (2014). Plant science plant synthetic biology takes root. Science, 346, 162–163.

    Article  PubMed  Google Scholar 

  8. McAdams, H. H., & Shapiro, L. (1995). Circuit simulation of genetic networks. Science, 269, 650–656.

    Article  CAS  PubMed  Google Scholar 

  9. McAdams, H. H., & Arkin, A. (2000). Towards a circuit engineering discipline. Current Biology, 10, R318-320.

    Article  CAS  PubMed  Google Scholar 

  10. Kaern, M., Blake, W. J., & Collins, J. J. (2003). The engineering of gene regulatory networks. Annual Review Biomedical Engineering, 5, 179–206.

    Article  CAS  Google Scholar 

  11. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D., & Keasling, J. D. (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 21, 796–802.

    Article  CAS  PubMed  Google Scholar 

  12. Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C., Withers, S. T., Shiba, Y., Sarpong, R., & Keasling, J. D. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943.

    Article  CAS  PubMed  Google Scholar 

  13. Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., & Polichuk, D. R. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532.

    Article  CAS  PubMed  Google Scholar 

  14. Antunes, M. S., Morey, K. J., Tewari-Singh, N., Bowen, T. A., Smith, J. J., Webb, C. T., Hellinga, H. W., & Medford, J. I. (2009). Engineering key components in a synthetic eukaryotic signal transduction pathway. Molecular Systems Biology, 5(1), 270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Antunes, M. S., Morey, K. J., Smith, J. J., Albrecht, K. D., Bowen, T. A., Zdunek, J. K., Troupe, J. F., Cuneo, M. J., Webb, C. T., Hellinga, H. W., & Medford, J. I. (2011). Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLoS ONE, 6(1), e16292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kristensen, C., Morant, M., Olsen, C. E., Ekstrøm, C. T., Galbraith, D. W., Møller, B. L., & Bak, S. (2005). Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences, 102, 1779–1784.

    Article  CAS  Google Scholar 

  17. Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2, e350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cameron, D. E., Bashor, C. J., & Collins, J. J. (2014). A brief history of synthetic biology. Nature Reviews Microbiology, 12, 381–390.

    Article  CAS  PubMed  Google Scholar 

  19. Stephanopoulos, G. (2012). Synthetic biology and metabolic engineering. ACS Synthetic Biology, 1, 514–525.

    Article  CAS  PubMed  Google Scholar 

  20. Sleight, S. C., Bartley, B. A., Lieviant, J. A., & Sauro, H. M. (2010). In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Research, 38, 2624–2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shetty, R. P., Endy, D., & Knight, T. F. (2008). Engineering BioBrick vectors from BioBrick parts. Journal of Biological Engineering, 2, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Phillips, I., & Silver, P. (2006). A new biobrick assembly strategy designed for facile protein engineering.

  23. Anderson, J., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: a flexible standard for biological part assembly. Journal of Biological Engineering, 4, 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C. S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant J., 45, 616–629.

    Article  CAS  PubMed  Google Scholar 

  25. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., & Smith, and H. O. . (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.

    Article  CAS  PubMed  Google Scholar 

  26. Weber, E., Gruetzner, R., Werner, S., Engler, C., & Marillonnet, S. (2011). Assembly of designer TAL effectors by Golden Gate cloning. PLoS ONE, 6, e19722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, M. A. J., Cranenburgh, R. M., Stevens, M. P., & Oyston, P. C. F. (2013). Synthetic biology: Biology by design. Microbiology, 159, 1219–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta, D., Dey, N., Leelavathi, S., & Ranjan, R. (2021). Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. Planta, 253, 42.

    Article  CAS  PubMed  Google Scholar 

  29. Chang, Y. C., Armitage, J. P., Papachristodoulou, A., & Wadhams, G. H. (2013). A single phosphatase can convert a robust step response into a graded, tunable or adaptive response. Microbiology, 7, 1276–1285.

    Article  CAS  Google Scholar 

  30. Donald, R. G., Flint, M., Kalyan, N., Johnson, E., Witko, S. E., Kotash, C., Zhao, P., Megati, S., Yurgelonis, I., Lee, P. K., & Matsuka, Y. V. (2013). A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology, 159, 1254–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sprinzak, D., & Elowitz, M. B. (2005). Reconstruction of genetic circuits. Nature, 438, 443–448.

    Article  CAS  PubMed  Google Scholar 

  32. Serrano, L. (2007). Synthetic biology: Promises and challenges. Molecular Systems Biology, 3, 158.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shih, P. M., Liang, Y., & Loqué, D. (2016). Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. The Plant Journal, 87, 103–117.

    Article  PubMed  Google Scholar 

  34. Evenson, R. E., & Gollin, D. (2003). Crop variety improvement and its effect on productivity the impact of international agricultural research. Cabi.

  35. Thornton, P. K. (2010). Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 365, 2853–2867.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goold, H. D., Wright, P., & Hailstones, D. (2018). Emerging opportunities for synthetic biology in agriculture. Genes, 9, 341.

    Article  PubMed Central  CAS  Google Scholar 

  37. Waltz, E. (2017). A new crop of microbe startups raises big bucks, takes on the establishment. Nature Biotechnology, 35, 1120–1122.

    Article  CAS  PubMed  Google Scholar 

  38. Pikaar, I., Matassa, S., Rabaey, K., Bodirsky, B. L., Popp, A., Herrero, M., & Verstraete, W. (2017). Microbes and the Next Nitrogen Revolution. Environmental Science and Technology, 51, 7297–7303.

    Article  CAS  PubMed  Google Scholar 

  39. Brophy, J. A., & Voigt, C. A. (2014). Principles of genetic circuit design. Nature Methods, 11, 508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pouvreau, B., Vanhercke, T., & Singh, S. (2018). From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Science, 273, 3–12.

    Article  CAS  PubMed  Google Scholar 

  41. Weisenberger, M. S., & Deans, T. L. (2018). Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. Journal of Industrial Microbiology and Biotechnology, 45, 599–614.

    Article  CAS  PubMed  Google Scholar 

  42. Young, E., & Alper, H. (2010). Synthetic biology: tools to design, build, and optimize cellular processes. Journal of Biomedicine & Biotechnology, 2010, 130781.

    Article  CAS  Google Scholar 

  43. Forster, A. C., & Church, G. M. (2006). Towards synthesis of a minimal cell. Molecular Systems Biology, 2, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pryciak, P. M. (2009). Designing new cellular signaling pathways. Chemistry & Biology, 16, 249–254.

    Article  CAS  Google Scholar 

  45. Carvalho, A., Chu, J., Meinguet, C., Kiss, R., Vandenbussche, G., Masereel, B., Wouters, J., Kornienko, A., Pelletier, J., & Mathieu, V. (2017). A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. European Journal of Pharmacology, 805, 25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galanie, S., Thodey, K., Trenchard, I. J., FilsingerInterrante, M., & Smolke, C. D. (2015). Complete biosynthesis of opioids in yeast. Science, 349, 1095–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voit, B. I., & Lederer, A. (2009). Hyperbranched and highly branched polymer architectures synthetic strategies and major characterization aspects. Chemical Reviews, 109, 5924–5973.

    Article  CAS  PubMed  Google Scholar 

  48. Cox, R. S., Madsen, C., McLaughlin, J. A., Nguyen, T., Roehner, N., Bartley, B., Beal, J., Bissell, M., Choi, K., Clancy, K., & Grünberg, R. (2018). Synthetic biology open language (SBOL) version 2.2. 0. J. Int. Bioinformatics. https://doi.org/10.1515/jib-2018-0001

    Article  Google Scholar 

  49. Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn, J. Y., Rodriguez, C. A., Roehner, N., Wilson, M. L., Adam, L., Anderson, J. C., & Bartley, B. A. (2014). The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat. Biotech., 32, 545–550.

    Article  CAS  Google Scholar 

  50. Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., & Keasling, J. D. (2012). Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucl. Acids Res., 40, e141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Madsen, C., McLaughlin, J. A., Mısırlı, G., Pocock, M., Flanagan, K., Hallinan, J., & Wipat, A. (2016). The SBOL Stack: A platform for storing, publishing, and sharing synthetic biology designs. ACS Synthetic Biology, 5, 487–497.

    Article  CAS  PubMed  Google Scholar 

  52. Der Nielsen, A. A., Shin, B. S., Vaidyanathan, J., Paralanov, P., Strychalski, V., Ross, E. A., & Densmore, D. (2016). Genetic circuit design automation. Science, 352, 7341.

    Article  CAS  Google Scholar 

  53. Bhatia, S., & andDensmore, D. . (2013). Pigeon: A design visualizer for synthetic biology. ACS Syn. Biology, 2, 348–350.

    Article  CAS  Google Scholar 

  54. Czar, M. J., Cai, Y., & Peccoud, J. (2009). Writing DNA with genoCAD. Nuclear Acids Research, 37, W40-47.

    Article  CAS  Google Scholar 

  55. Sarrion-Perdigones, A., Vilar, M. V., Palací, J., Castelijns, B., Forment, J., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2013). GoldenBraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology, 162, 1618–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beal, J., Overney, C., Adler, A., Yaman, F., Tiberio, L., & Samineni, M. (2019). Tasbe flow analytics: A package for calibrated flow cytometry analysis. ACS Synthetic Biology, 8, 1524–1529.

    Article  CAS  PubMed  Google Scholar 

  57. Engler, C., Youles, M., Gruetzner, R., Ehnert, T. M., Werner, S., Jones, J. D., Patron, N. J., & Marillonnet, S. (2014). A golden gate modular cloning toolbox for plants. ACS Synthetic Biology, 3, 839–843.

    Article  CAS  PubMed  Google Scholar 

  58. Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A., Jahesh, G. K., Coombe, H., & Warren, L. (2017). ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genetical Research, 27, 768–777.

    CAS  Google Scholar 

  59. Rodrigo, G., & Jaramillo, A. (2013). AutoBioCAD: Full biodesign automation of genetic circuits. ACS Synthetic Biology, 2, 230–236.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, K., Stracquadanio, G., Luo, J., Boeke, J. D., & Bader, J. S. (2016). BioPartsBuilder: A synthetic biology tool for combinatorial assembly of biological parts. Bioinformatics, 32, 937–939.

    Article  CAS  PubMed  Google Scholar 

  61. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  62. Kohl, M., Wiese, S., & Warscheid, B. (2011). Cytoscape software for visualization and analysis of biological networks. Data mining in proteomics (pp. 291–303). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  63. Burland, T. G. (2009). DNASTAR’s Lasergene sequence analysis software. Bioinformatics methods and protocols (pp. 71–91). Humana Press.

    Google Scholar 

  64. Castillo-Hair, S. M., Sexton, J. T., Landry, B. P., Olson, E. J., Igoshin, O. A., & Tabor, J. J. (2016). FlowCal: A user-friendly, open source software tool for automatically converting flow cytometry data from arbitrary to calibrated units. ACS Syn. Biol., 5, 774–780.

    Article  CAS  Google Scholar 

  65. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., & Govindarajan, S. (2006). Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics, 7, 285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Napolitano, F., Carrella, D., Mandriani, B., Pisonero-Vaquero, S., Sirci, F., Medina, D. L., Brunetti-Pierri, N., & di Bernardo, D. (2018). gene2drug: A computational tool for pathway-based rational drug repositioning. Bioinformatics, 34, 1498–1505.

    Article  CAS  PubMed  Google Scholar 

  67. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., & Thierer, T. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hillson, N. J., Rosengarten, R. D., & Keasling, J. D. (2012). j5 DNA assembly design automation software. ACS Synthetic Biology, 1, 14–21.

    Article  CAS  PubMed  Google Scholar 

  69. Olivier, B. G., & Snoep, J. L. (2004). Web-based kinetic modelling using JWS Online. Bioinformatics, 20, 2143–2144.

    Article  CAS  PubMed  Google Scholar 

  70. Swainston, N., Dunstan, M., Jervis, A. J., Robinson, C. J., Carbonell, P., Williams, A. R., Faulon, J. L., Scrutton, N. S., & Kell, D. B. (2018). PartsGenie: An integrated tool for optimizing and sharing synthetic biology parts. Bioinformatics, 34, 2327–2329.

    Article  CAS  PubMed  Google Scholar 

  71. Mısırlı, G., Taylor, R., Goñi-Moreno, A., McLaughlin, J. A., Myers, C., Gennari, J. H., Lord, P., & Wipat, A. (2019). SBOL-OWL: An ontological approach for formal and semantic representation of synthetic biology information. ACS Synthetic Biology, 8, 1498–1514.

    Article  PubMed  CAS  Google Scholar 

  72. Carbonell, P., Wong, J., Swainston, N., Takano, E., Turner, N. J., Scrutton, N. S., Kell, D. B., Breitling, R., & Faulon, J. L. (2018). Selenzyme: Enzyme selection tool for pathway design. Bioinformatics, 34, 2153–2154.

    Article  PubMed  CAS  Google Scholar 

  73. Otero-Muras, I., Henriques, D., & Banga, J. R. (2016). SYNBADm: A tool for optimization-based automated design of synthetic gene circuits. Bioinformatics, 32, 3360–3362.

    Article  CAS  PubMed  Google Scholar 

  74. McLaughlin, J. A., Myers, C. J., Zundel, Z., Mısırlı, G., Zhang, M., Ofiteru, I. D., Goñi-Moreno, A., & Wipat, A. (2018). SynBioHub: A standards-enabled design repository for synthetic biology. ACS Synthetic Biology, 16, 682–688.

    Article  CAS  Google Scholar 

  75. Weeding, E., Houle, J., & Kaznessis, Y. N. (2010). SynBioSS designer: A web-based tool for the automated generation of kinetic models for synthetic biological constructs. Brief. Bioinformatics, 11, 394–402.

    Article  CAS  PubMed  Google Scholar 

  76. Chandran, D., Bergmann, F. T., & Sauro, H. M. (2009). TinkerCell: Modular CAD tool for synthetic biology. Journal of Biological Engineering, 3, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lu, G., & Moriyama, E. N. (2004). Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinformatics, 5, 378–388.

    Article  CAS  PubMed  Google Scholar 

  78. McLaughlin, J. A., Pocock, M., Mısırlı, G., Madsen, C., & Wipat, A. (2016). VisBOL: web-based tools for synthetic biology design visualization. ACS Synthetic Biology, 15, 874–876.

    Article  CAS  Google Scholar 

  79. Schaumberg, K. A., Antunes, M. S., Kassaw, T. KXu., Zalewski, W., & Medford, C. S. (2016). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods, 13, 94–100.

    Article  CAS  PubMed  Google Scholar 

  80. Campàs, M., Carpentier, R., & Rouillon, R. (2008). Plant tissue-and photosynthesis-based biosensors. Biotechnology Advances, 26, 370–378.

    Article  PubMed  CAS  Google Scholar 

  81. Pretorius, I. S. (2017). Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology, 37, 112–136.

    Article  CAS  PubMed  Google Scholar 

  82. Kim, H. J., Jeong, H., & Lee, S. J. (2018). Synthetic biology for microbial heavy metal biosensors. Analytical and Bioanalytical Chemistry, 410, 1191–1203.

    Article  CAS  PubMed  Google Scholar 

  83. Park, S. Y., Peterson, F. C., Mosquna, A., Yao, J., Volkman, B. F., & Cutler, S. R. (2015). Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 520, 545–548.

    Article  PubMed  CAS  Google Scholar 

  84. Zurcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P. T., & Müller, B. (2013). A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiology, 161, 1066–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, W., Mazarei, M., Rudis, M. R., Fethe, M. H., Peng, Y., Millwood, R. J., Schoene, G., Burris, J. N., & Stewart, C. N., Jr. (2013). Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. Plant Biotechnology Journal, 11, 43–52.

    Article  CAS  PubMed  Google Scholar 

  86. Mazarei, M., Teplova, I., Hajimorad, M. R., & Stewart, C. N. (2008). Pathogen phytosensing: Plants to report plant pathogens. Sensors, 8, 2628–2641.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Müller, K., Siegel, D. R., Jahnke, F., Gerrer, K., Wend, S., Decker, E. L., Reski, R., Weber, W., & Zurbriggen, M. D. (2014). A red light-controlled synthetic gene expression switch for plant systems. Molecular BioSystems, 10, 1679–1688.

    Article  PubMed  Google Scholar 

  88. Singh, A. K., & Verma, N. (2019). 4. Plants and plant-derived materials used for biosensor development. In Industrial Biotechnology (pp. 73–88). De Gruyter.

  89. Liao, C., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., & Weijers, D. (2015). Reporters for sensitive and quantitative measurement of auxin response. Nat. Meth., 12, 207–210.

    Article  CAS  Google Scholar 

  90. Muller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, 1094–1097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wu, R., Duan, L., Pruneda-Paz, J. LOh., Pound, D. H., Kay, M., & S. and Dinneny, J. R. . (2018). The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional regulation. Plant Physiology, 177, 1650–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fu, X., & Harberd, N. P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743.

    Article  CAS  PubMed  Google Scholar 

  93. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J. M., Lorenzo, O., Garcia-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., & Micol, J. L. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448, 666–671.

    Article  CAS  PubMed  Google Scholar 

  94. Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., Beeckman, T., Kepinski, S., Traas, J., Bennett, M. J., & Vernoux, T. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nat., 482, 103–106.

    Article  CAS  Google Scholar 

  95. Yang, W., Zhang, W., & Wang, X. (2017). Post-translational control of ABA signalling: The roles of protein phosphorylation and ubiquitination. Plant Biotechnol., 15, 4–14.

    Article  CAS  Google Scholar 

  96. Larrieu, A., Champion, A., Legrand, J., Lavenus, J., Mast, D., Brunoud, G., & Oh, J. (2015). A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 6, 1–9.

    Article  CAS  Google Scholar 

  97. Samodelov, S. L., Beyer, H. M., Guo, X., Augustin, M., Jia, K. P., Baz, L., Ebenhöh, O., Beyer, P., Weber, W., Al-Babili, S., & Zurbriggen, M. D. (2016). StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity. Science Advances, 2, 1601266.

    Article  CAS  Google Scholar 

  98. Jones, A. M., Danielson, J. Å., ManojKumar, S. N., Lanquar, V., Grossmann, G., & Frommer, W. B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, 3, e01741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rizza, A., Walia, A., Lanquar, V., Frommer, W. B., & Jones, A. M. (2017). In vivo gibberellin gradients visualized in rapidly elongating tissues with Gibberellin Perception Sensor 1. Nature Plants, 3, 803–813.

    Article  CAS  PubMed  Google Scholar 

  100. Chaudhuri, B., Hormann, F., & Frommer, W. B. (2011). Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. Journal of Experimental Botany, 62, 2411–2417.

    Article  CAS  PubMed  Google Scholar 

  101. Bogner, M., & Ludewig, U. (2007). Visualization of arginine influx into plant cells using a specific FRET-sensor. J. Fluor., 17, 350–360.

    Article  CAS  Google Scholar 

  102. Adams, J. P., Adeli, A., Hsu, C. Y., Harkess, R. L., Page, G. P., Depamphilis, C. W., Schultz, E. B., & Yuceer, C. (2012). Plant-based FRET biosensor discriminates environmental zinc levels. Plant Biotechnology Journal, 10, 207–216.

    Article  CAS  PubMed  Google Scholar 

  103. Pyne, M. E., Narcross, L., & Martin, V. J. J. (2019). Engineering plant secondary metabolism in microbial systems. Plant Physiology, 179, 844–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao, M., Zhang, Y., Chen, X., Lee, E. J., Barber, C. J., Chakrabarty, R., Desgagné-Penix, I., Haslam, T. M., Kim, Y. B., Liu, E., & MacNevin, G. (2013). Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166, 122–134.

    Article  CAS  PubMed  Google Scholar 

  105. Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Dahl, R. H., Tai, A., Mahatdejkul-Meadows, T., Xu, L., & Zhao, L. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 537, 694–697.

    Article  CAS  PubMed  Google Scholar 

  106. Tsuruta, H., Paddon, C. J., Eng, D., Lenihan, J. R., Horning, T., Anthony, L. C., Regentin, R., Keasling, J. D., Renninger, N. S., & Newman, J. D. (2009). High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE, 4, e4489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhou, X., Chen, R., Yu, Z., Li, R., Li, J., Zhao, X., Song, S., Liu, J., & Huang, G. (2015). Dichloroacetate restores drug sensitivity in paclitaxel-resistant cells by inducing citric acid accumulation. Molecular Cancer, 14, 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. DeLoache, W. C., Russ, Z. N., Narcross, L., Gonzales, A. M., Martin, V. J., & Dueber, J. E. (2015). An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 11, 465–471.

    Article  CAS  PubMed  Google Scholar 

  109. Jongedijk, E., Cankar, K., Buchhaupt, M., Schrader, J., Bouwmeester, H., & Beekwilder, J. (2016). Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 100, 2927–2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mendez-Perez, D., Alonso-Gutierrez, J., Hu, Q., Molinas, M., Baidoo, E. E. K., Wang, G., Chan, L. J. G., Adams, P. D., Petzold, C. J., Keasling, J. D., & Lee, T. S. (2014). Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnology and Bioengineering, 114, 1703–1712.

    Article  CAS  Google Scholar 

  111. Yang, J., & Guo, L. (2014). Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microbiol Cell Fact, 13, 160.

    Article  CAS  Google Scholar 

  112. Chen, Y., Xiao, W., Wang, Y., Liu, H., Li, X., & Yuan, Y. (2016). Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microbiol. Cell Fact, 15, 113.

    Article  CAS  Google Scholar 

  113. Denby, C. M., Li, R. A., Vu, V. T., Costello, Z., Lin, W., Chan, L. J., Williams, J., Donaldson, B., Bamforth, C. W., Petzold, C. J., & Scheller, H. V. (2018). Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Comm., 9, 1–10.

    Article  CAS  Google Scholar 

  114. Brown, S., Clastre, M., Courdavault, V., & O’Connor, S. E. (2015). De novo production of the plant-derived alkaloid strictosidine in yeast. Proce. Nat. Acad. Sci., 112, 3205–3210.

    Article  CAS  Google Scholar 

  115. Ro, D. K., & Douglas, C. J. (2004). Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): Implications for control of metabolic flux into the phenylpropanoid pathway. Journal of Biological Chemistry, 279, 2600–2607.

    Article  CAS  Google Scholar 

  116. Hale, V., Keasling, J. D., Resnninger, N., & Diagana, T. T. (2007). Microbially derived artemisinin: A biotechnology solution to the global problem of access to affordable antimalarial drugs. The Amer. J. Trop. Med. Hyg., 77, 198–202.

    Article  Google Scholar 

  117. Minami, H., Kim, J. S., Ikezawa, N., Takemura, T., Katayama, T., Kumagai, H., & Sato, F. (2008). Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. U S A., 105, 7393–7398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Trenchard, I. J., Siddiqui, M. S., Thodey, K., & Smolke, C. D. (2015). De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metabolic Engineering, 31, 74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, L., Zhu, J., Sun, C., Deng, Z., & Qu, X. (2019). Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route. Chemical Science, 11, 364–371.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ding, M. Z., Yan, H. F., Li, L. F., Zhai, F., Shang, L. Q., Yin, Z., & Yuan, Y. J. (2014). Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyldiphosphate synthase directed by a computer-aided docking strategy. PLoS ONE, 9, 109348.

    Article  CAS  Google Scholar 

  121. Alper, H., Miyaoku, K., & Stephanopoulos, G. (2006). Characterization of lycopene-overproducing E. colistrains in high cell density fermentations. Appl. Micro. Biotech., 72, 968–974.

    Article  CAS  Google Scholar 

  122. Ghimire, G. P., Lee, H. C., & Sohng, J. K. (2009). Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Applied and Environment Microbiology, 75, 7291–7293.

    Article  CAS  Google Scholar 

  123. Wang, C., Kim, J. H., & Kim, S. W. (2014). Synthetic biology and metabolic engineering for marine carotenoids: New opportunities and future prospects. Marine Drugs, 12, 4810–4832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Horinouchi, S. (2009). Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr. Opi. Chem. Biol., 13, 197–204.

    Article  CAS  Google Scholar 

  125. Vannelli, T. Q., Sweigard, W. W., & Gatenby, J. (2007). Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabolic Engineering, 9, 142–151.

    Article  CAS  PubMed  Google Scholar 

  126. Jiang, H., Wood, K. V., & Morgan, J. A. (2005). Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Applied and Environment Microbiology, 71, 2962–2969.

    Article  CAS  Google Scholar 

  127. Zhang, Y., Li, S. Z., Li, J., Pan, X., Cahoon, R. E., Jaworski, J. G., Wang, X., Jez, J. M., Chen, F., & Yu, O. (2006). Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. Journal of the American Chemical Society, 128, 13030–13031.

    Article  CAS  PubMed  Google Scholar 

  128. Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J., & Bock, R. (2016). A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife, 5, e13664.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nomura, T., Ogita, S., & Kato, Y. (2018). Rational metabolic-flow switching for the production of exogenous secondary metabolites in bamboo suspension cells. Science and Reports, 8, 1–11.

    Google Scholar 

  130. Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29, 315–330.

    Article  CAS  PubMed  Google Scholar 

  131. Kubis, A., & Bar-Even, A. (2019). Synthetic biology approaches for improving photosynthesis. Journal of Experimental Botany, 70, 1425–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Long, B. M., Hee, W. Y., Sharwood, R. E., Rae, B. D., Kaines, S., Lim, Y. L., Nguyen, N. D., Massey, B., von Bala, S., Caemmerer, S., & Badger, M. R. (2018). Carboxysome encapsulation of the CO 2-fixing enzyme Rubisco in tobacco chloroplasts. Nat. Comm., 9, 1–14.

    Article  CAS  Google Scholar 

  133. Ainsworth, E. A., Rogers, A., & Leakey, A. D. (2018). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147, 13–19.

    Article  CAS  Google Scholar 

  134. Rae, B. D., Long, B. M., Förster, B., Nguyen, N. D., Velanis, C. N., Atkinson, N., Hee, W. Y., Mukherjee, B., Price, G. D., & McCormick, A. J. (2017). Progress and challenges of engineering a biophysical CO2-concentrating mechanism in to higher plants. Journal of Experimental Botany, 68, 3717–3737.

    Article  CAS  PubMed  Google Scholar 

  135. Schuler, M. L., Mantegazza, O., & Weber, A. P. (2016). Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. The Plant Journal, 87, 51–65.

    Article  CAS  PubMed  Google Scholar 

  136. Trudeau, D. L., Edlich-Muth, C., Zarzycki, J., Scheffen, M., Goldsmith, M., Khersonsky, O., Avizemer, Z., Fleishman, S. J., Cotton, C. A. R., Erb, T. J., Tawfik, D. S., & Bar-Even, . (2018). A Design and in vitro realization of carbon-conserving photorespiration. Proc. Natl. Acad. Sci. U S A., 115, 11455–11464.

    Article  CAS  Google Scholar 

  137. Yu, H., Li, X., Duchoud, F., Chuang, D. S., & Liao, J. C. (2018). Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. Nature Communications, 9, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Schwander, T. S., von Borzyskowski, L., Burgener, S., Cortina, N. S., & Erb, T. J. (2016). A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 354, 900–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hong, Y., Ren, J., Zhang, X., Wang, W., & Zeng, A. P. (2020). Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Current Opinion Biotechnology, 64, 70–78.

    Article  CAS  Google Scholar 

  140. Wang, D., Wang, J., Shi, Y., Li, R., Fan, F., Huang, Y., Li, W., Chen, N., Huang, L., Dai, Z., & Zhang, X. (2020). Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metabolic Engineering, 61, 131–140.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020). A CRISPR way for accelerating improvement of food crops. Nat. Food, 1, 200–205.

    Article  Google Scholar 

  142. Li, C., Brant, E., Budak, H., & Zhang, B. (2021). CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University. Science. B, 22, 253–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Saraswat, P., & Ranjan, R. (2021). CRISPR-Cas system: A precise tool for plant genome editing. The Nucleus, 1–18.

  144. Kumlehn, J., Pietralla, J., Hensel, G., Pacher, M., & Puchta, H. (2018). The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. Journal Int. Plant Biology, 60, 1127–1153.

    Article  CAS  Google Scholar 

  145. Majer, E., Llorente, B.-C., & Daròs, M. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Science and Reports, 7, 1–10.

    CAS  Google Scholar 

  146. Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Petrie, J. R., Shrestha, P., Zhou, X. R., Mansour, M. P., Liu, Q., Belide, S., Nichols, P. D., & Singh, S. P. (2012). Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE, 7, e49165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, W., Mazarei, M., Peng, Y., Fethe, M. H., Rudis, M. R., Lin, J., Millwood, R. J., Arelli, P. R., & Stewart, C. N., Jr. (2014). Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters. Plant Biotechnology Journal, 12, 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  149. Rogers, C., & Oldroyd, G. E. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65, 1939–1946.

    Article  CAS  PubMed  Google Scholar 

  150. Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36, 117–128.

    Article  CAS  PubMed  Google Scholar 

  151. Andersson, M., Turesson, H., Olsson, N., Fält, A. S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., & Hofvander, P. (2018). Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Planta., 164, 378–384.

    Article  CAS  Google Scholar 

  152. Le Dong, X. Q., Zhu, J., Liu, C., Zhang, X., Cheng, B., Mao, L., & Xie, C. (2019). Supersweet and waxy: Meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 17, 1853.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jagadevan, S., Banerjee, A., Banerjee, C., Guria, C., Tiwari, R., Baweja, M., & Shukla, P. (2018). Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for Biofuels, 11, 185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., He, H., Wang, W., Zeng, X., Shao, Y., & Pan, Y. (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Repo., 7, 1–2.

    CAS  Google Scholar 

  155. Nieves-Cordones, M., Mohamed, S., Tanoi, K., Kobayashi, N. I., Takagi, K., Vernet, A., Guiderdoni, E., Périn, C., Sentenac, H., & Véry, A. A. (2017). Production of low-Cs+ rice plants by inactivation of the K+ transporter Os HAK 1 with the CRISPR-Cas system. The Plant J., 92, 43–56.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., Xiao, J., Li, F., & Wu, J. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticilliumdahliae in allotetraploid upland cotton. Frontiers in Plant Science, 9, 842.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE, 11, 0154027.

    Google Scholar 

  158. Gosavi, G., Yan, F., Ren, B., Kuang, Y., Yan, D., Zhou, X., & Zhou, H. (2020). Applications of CRISPR technology in studying plant-pathogen interactions: Overview and perspective. Phytopath. Res., 2, 1–9.

    Article  Google Scholar 

  159. Lu, K., Wu, B., Wang, J., Zhu, W., Nie, H., Qian, J., Huang, W., & Fang, Z. (2018). Blocking amino acid transporter Os AAP 3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotech. J., 16, 1710–1722.

    Article  CAS  Google Scholar 

  160. Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F., & Faure, J. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15, 729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., & Yang, J. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dong, H., Huang, Y., & Wang, K. (2021). the development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes, 12, 912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lawrenson, T., Shorinola, O. S., Li, N., Østergaard, C., Patron, L., & Uauy, N. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 16, 258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J., & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, 12617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169, 931–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., Chen, L., & Liu, Y. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications, 8, 1310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Sheng, X., Sun, Z., Wang, X., Tan, Y., Yu, D., Yuan, G., & Duan, M. (2020). Improvement of the rice “easy-to-shatter” trait via CRISPR/Cas9-mediated mutagenesis of the qSH1 gene. Frontiers in Plant Science, 11, 619.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., & Xia, L. (2021). Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 19, 937–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Whitney, S. M., & Andrews, T. J. (2001). Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl. Acad. Sci. U S A., 98, 14738–14743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H. J., Rosenkranz, R., Stäbler, N., Schönfeld, B., Kreuzaler, F., & Peterhänsel, C. (2007). Chloroplasticphotorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 25, 593–599.

    Article  CAS  PubMed  Google Scholar 

  171. Dalal, J., Lopez, H., Vasani, N. B., Hu, Z., Swift, J. E., Yalamanchili, R., Dvora, M., Lin, X., Xie, D., Qu, R., & Sederoff, H. (2015). Aphotorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotech. Biol., 8, 175.

    Google Scholar 

  172. Maier, A., Fahnenstich, H. V., Caemmererm, S., Engqvistm, M. K., & Flügge, W. A. P. (2012). Transgenic introduction of a glycolate oxidative cycle into A thaliana chloroplasts leads to growth improvement. Front Plant Science, 3, 38.

    Article  CAS  Google Scholar 

  173. Whitney, S. M., Birch, R., Kelso, C., Beck, J. L., & Kapralov, M. V. (2015). Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc. Natl. Acad. Sci. U S A., 112, 3564–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, R., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant J., 94, 513–524.

    Article  CAS  PubMed  Google Scholar 

  175. Li, R., Zhang, L., Wang, L., Chen, L., Zhao, R., Sheng, J., & Shen, L. (2018). Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J. Agri. Food Chem., 66, 9042–9051.

    Article  CAS  Google Scholar 

  176. Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., & Tang, J. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39, 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, C., Srivastava, A. K., & Sadanandom, A. (2019). Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv, 35, 555706.

    Google Scholar 

  178. Shim, J. SOh., Chung, N., Kim, P. J., & Choi, Y. S. (2018). Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science, 9, 310.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Shen, C., Que, Z., Xia, Y., Tang, N., Li, D., He, R., & Cao, M. (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology, 60, 539–547.

    Article  CAS  Google Scholar 

  180. Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2019). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3 and OsMYB30 with the CRISPR-Cas9 system. Frontiers in Plant Science, 10, 1663.

    Article  PubMed  Google Scholar 

  181. Van Der Oost, J., Westra, E. R., Jackson, R. N., & Wiedenheft, B. (2014). Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Reviews Microbiology, 12, 479–492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M., & Voytas, D. F. (2015). Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants, 1, 1–4.

    Article  CAS  Google Scholar 

  183. Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J. S., Huang, S., Liu, S. V., Cruz, C., Frommer, W. B., & White, F. F. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant J., 82, 632–643.

    Article  CAS  PubMed  Google Scholar 

  184. de Toledo Thomazella, D. P., Brail, Q., Dahlbeck, D., & Staskawicz, B. (2016). CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv, 064824.

  185. Jia, H., Orbovic, V., Jones, J. B., & Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: DCs LOB 1.3 infection. Plant Biotechnology Journal, 14, 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  186. Kis, A., Hamar, É., Tholt, G., Bán, R., & Havelda, Z. (2019). Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol., 17, 1004.

    Article  Google Scholar 

  187. Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Science and Reports, 7, 1–6.

    CAS  Google Scholar 

  188. Paul, P., Dhatt, B. K., Miller, M., Folsom, J. J., Wang, Z., Krassovskaya, I., Liu, K., Sandhu, J., Yu, H., Zhang, C., & Obata, T. (2020). MADS78 and MADS79 are essential regulators of early seed development in rice. Plant Physiology, 182, 933–948.

    Article  CAS  PubMed  Google Scholar 

  189. Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., & Wang, S. (2016). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 14, 2134–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y., & Xia, L. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science, 8, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Yu, Q. H., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., & Asmutola, P. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Science and Reports, 7, 1–9.

    CAS  Google Scholar 

  192. Qi, W., Zhu, T., Tian, Z., Li, C., Zhang, W., & Song, R. (2016). High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotech., 16, 58.

    Article  CAS  Google Scholar 

  193. Ashokkumar, S., Jaganathan, D., Ramanathan, V., Rahman, H., Palaniswamy, R., Kambale, R., & Muthurajan, R. (2020). Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE, 15, e0237018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, F., & Zhang, W. (2019). Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. Journal of Biosafety Biosec., 1, 22–30.

    Article  Google Scholar 

  195. Hewett, J. P., Wolfe, A. K., Bergmann, R. A., Stelling, S. C., & Davis, K. L. (2016). Human health and environmental risks posed by synthetic biology R&D for energy applications: A literature analysis. App. Biosaf., 21, 177–184.

    Article  Google Scholar 

  196. Trump, B. D., Keisler, J. M., Volk, K. M., & Linkov, I. (2020). Biosecurity demands resilience. Environmental Science & Technology, 54(8), 4706–4708.

    Article  CAS  Google Scholar 

  197. Ehni, H. J. (2008). Dual use and the ethical responsibility of scientists. Archivum Immunologiae et Therapiae Experimentalis, 56, 147.

    Article  PubMed  Google Scholar 

  198. Chin, J. X., Chung, B. K. S., & Lee, D. Y. (2014). Codon Optimization OnLine (COOL): A web-based multi-objective optimization platform for synthetic gene design. Bioinformatics, 30(15), 2210–2212.

    Article  CAS  PubMed  Google Scholar 

  199. Kuwahara, H., Cui, X., Umarov, R., Grunberg, R., Myers, C. J., & Gao, X. (2017). SBOLme: A repository of SBOL parts for metabolic engineering. ACS Synthetic Biology, 6, 732–736.

    Article  CAS  PubMed  Google Scholar 

  200. Quinn, J. Y., Cox, R. S. III, Adler, A., Beal, J., Bhatia, S., Cai, Y., Chen, J., Clancy, K., Galdzicki, M., Hillson, N. J., Le Novère, N., Maheshwari, A. J., McLaughlin, J. A., Myers, C. J., P, U., Pocock, M., Rodriguez, C., Soldatova, L., Stan, G. B., Swainston, N., Wipat, A., & Sauro, H. M. (2015). SBOL visual: A graphical language for genetic designs. PLoS Biology, 13(12), e1002310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RR & DG had designed the layout. DG & GS had written the manuscript and GS & PS had compiled the tables and figures. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rajiv Ranjan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical Approval

Not applicable for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Sharma, G., Saraswat, P. et al. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 63, 1138–1154 (2021). https://doi.org/10.1007/s12033-021-00386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00386-9

Keywords

Navigation