Skip to main content
Log in

Visualization of Arginine Influx into Plant Cells Using a Specific FRET-sensor

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Amino acids are not only the building blocks of proteins, but are the metabolic precursors of a variety of primary and secondary metabolites. In order to detect and visualize how plants transport, sense, and store amino acids with sub-cellular specificity, chimeric fluorescent proteins that respond to changes in amino acid concentrations were constructed. The reporter element of these sensors consists of a periplasmic bacterial protein that undergoes large, non-enzymatic conformational changes upon binding of its substrate. The receptor protein was attached to ECFP and an environmentally insensitive YFP derivative at opposite ends. Fluorescence resonance energy transfer changes were specifically observed after addition of arginine and to a lesser extent ornithine. The recombinant sensor showed a concentration-dependent increase in the fluorescence ratio with an apparent in vitro affinity for arginine of ∼2 mM. A mutation in the binding pocket lowered the affinity and decreased the specificity. When expressed in E. coli, an increase in the fluorescence ratio was specifically detected after exposure to arginine and ornithine. Transient expression of the sensor in plant cell protoplasts and stable expression in Arabidopsis roots revealed specific fluorescence changes upon addition of arginine. The analysis suggests that fluorescent amino acid sensors may be versatile tools for studying the in vivo dynamics of metabolism and compartmentalization in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  PubMed  CAS  Google Scholar 

  2. Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  PubMed  CAS  Google Scholar 

  3. Galili G, Hofgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  PubMed  CAS  Google Scholar 

  4. Goldraij A, Polacco JC (2000) Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 210:652–658

    Article  PubMed  CAS  Google Scholar 

  5. Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700

    PubMed  CAS  Google Scholar 

  6. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  7. Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27

    Article  PubMed  CAS  Google Scholar 

  8. Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB (2005) Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 33:287–290

    Article  PubMed  CAS  Google Scholar 

  9. Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  PubMed  CAS  Google Scholar 

  10. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  11. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  12. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99:9846–9851

    Article  PubMed  CAS  Google Scholar 

  13. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102:8740–8745

    Article  PubMed  CAS  Google Scholar 

  14. de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675

    Article  PubMed  CAS  Google Scholar 

  15. Dattelbaum JD, Lakowicz JR (2001) Optical determination of glutamine using a genetically engineered protein. Anal Biochem 291:89–95

    Article  PubMed  CAS  Google Scholar 

  16. Weiner JH, Furlong CE, Heppel LA (1971) A binding protein for L-glutamine and its relation to active transport in E. coli. Arch Biochem Biophys 142:715–717

    Article  PubMed  CAS  Google Scholar 

  17. Hsiao CD, Sun YJ, Rose J, Wang BC (1996) The crystal structure of glutamine-binding protein from Escherichia coli. J Mol Biol 262:225–242

    Article  PubMed  CAS  Google Scholar 

  18. Sun YJ, Rose J, Wang BC, Hsiao CD (1998) The structure of glutamine-binding protein complexed with glutamine at 1.94 A resolution: comparisons with other amino acid binding proteins. J Mol Biol 278:219–229

    Article  PubMed  CAS  Google Scholar 

  19. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  20. Mayer M, Dynowski M, Ludewig U (2006) Ammonium ion transport by the AMT/Rh homolog LeAMT1;1. Biochem J 396:431–437

    Article  PubMed  CAS  Google Scholar 

  21. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    Article  PubMed  CAS  Google Scholar 

  22. Dixit R, Cyr R, Gilroy S (2006) Using intrinsically fluorescent proteins for plant cell imaging. Plant J 45:599–615

    Article  PubMed  CAS  Google Scholar 

  23. Laube B, Schemm R, Betz H (2004) Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor. Neuropharmacology 47:994–1007

    PubMed  CAS  Google Scholar 

  24. Burkovski A, Kramer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    Article  PubMed  CAS  Google Scholar 

  25. Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  PubMed  CAS  Google Scholar 

  27. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    Article  PubMed  CAS  Google Scholar 

  28. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  PubMed  CAS  Google Scholar 

  29. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  30. Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471-478

    Article  PubMed  CAS  Google Scholar 

  31. Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VP, Frommer WB (2004) Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from Hydathodes of Arabidopsis leaves. Plant Cell 16:1827–1840

    Article  PubMed  CAS  Google Scholar 

  32. Magalhaes JR, Wilcox GE (1984) Growth, free amino acids, and mineral composition of tomato plants in relation to nitrogen form and growing media. J Am Soc Hortic Sci 109:406–411

    CAS  Google Scholar 

  33. Prosser IM, Purves JV, Saker LR, Clarkson DT (2001) Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J Exp Bot 52:113–121

    Article  PubMed  CAS  Google Scholar 

  34. Rabe E, Lovatt CJ (1986) Increased arginine biosynthesis during phosphorus deficiency a response to the increased ammonia content of leaves. Plant Physiol 81:774–779

    Article  PubMed  CAS  Google Scholar 

  35. Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 170:2683–2686

    PubMed  CAS  Google Scholar 

  36. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  37. Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Petra Neumann (ZMBP, University of Tübingen) for excellent technical help, Bettina Stadelhofer and Harald Stransky for the HPLC analysis, Marek Dynowski (ZMBP, University of Tübingen) for the modeling and display of the structures; and F. de Courcy, B. Neuhäuser and M. Krebs (ZMBP, University of Tübingen) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Ludewig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogner, M., Ludewig, U. Visualization of Arginine Influx into Plant Cells Using a Specific FRET-sensor. J Fluoresc 17, 350–360 (2007). https://doi.org/10.1007/s10895-007-0192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0192-2

Keywords

Navigation