Skip to main content

An Introduction to Plant Tissue Culture: Advances and Perspectives

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Plant tissue culture techniques are the most frequently used biotechnological tools for basic and applied purposes ranging from investigation on plant developmental processes, functional gene studies, commercial plant micropropagation, generation of transgenic plants with specific industrial and agronomical traits, plant breeding and crop improvement, virus elimination from infected materials to render high-quality healthy plant material, preservation and conservation of germplasm of vegetative propagated plant crops, and rescue of threatened or endangered plant species. Additionally, plant cell and organ cultures are of interest for the production of secondary metabolites of industrial and pharmaceutical interest. New technologies, such as the genome editing ones combined with tissue culture and Agrobacterium tumefaciens infection, are currently promising alternatives for the highly specific genetic manipulation of interesting agronomical or industrial traits in crop plants. Application of omics (genomics, transcriptomics, and proteomics) to plant tissue culture will certainly help to unravel complex developmental processes such as organogenesis and somatic embryogenesis, which will probably enable to improve the efficiency of regeneration protocols for recalcitrant species. Additionally, metabolomics applied to tissue culture will facilitate the extraction and characterization of complex mixtures of natural plant products of industrial interest. General and specific aspects and applications of plant tissue culture and the advances and perspectives are described in this edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. Sber Akad Wiss Wein 111:69–92

    Google Scholar 

  2. White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600. https://doi.org/10.1104/pp.9.3.585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. White PR (1939) Controlled differentiation in a plant tissue culture. Bull Torrey Bot Club 66:507–513

    Article  Google Scholar 

  4. White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Article  Google Scholar 

  5. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25. https://doi.org/10.1086/332956

    Article  Google Scholar 

  6. Thimann KV, Schneider CL (1939) The relative activities of different auxins. Am J Bot 26:328–333

    Article  CAS  Google Scholar 

  7. Miller CO, Skoog F, Von Saltza MH et al (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392. https://doi.org/10.1021/ja01610a105

    Article  CAS  Google Scholar 

  8. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  9. Morel G, Martin G (1952) Guérison de dahlías atteints d’une maladie a virus. CR Acad Sci III-Vie 235:1324–1325

    CAS  Google Scholar 

  10. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grain of Datura in vitro. Nature 212:97–98. https://doi.org/10.1038/212097a0

    Article  Google Scholar 

  11. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497. https://doi.org/10.1038/204497a0

    Article  Google Scholar 

  12. Raghavan V (2003) One hundred years of zygotic embryo culture investigations. In Vitro Cell Dev Biol Plant 39:437–442. https://doi.org/10.1079/IVP2003436

    Article  Google Scholar 

  13. Power JB, Cummind SE, Cocking EC (1970) Fusion of isolated protoplasts. Nature 225:1016–1018. https://doi.org/10.1038/2251016a0

    Article  PubMed  CAS  Google Scholar 

  14. Melchers G, Sacristán MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsb Res Commun 43:203–218. https://doi.org/10.1007/BF02906548

    Article  Google Scholar 

  15. Zenk MH (1991) Chasing the enzymes of secondary metabolism: plant cell cultures as a pot of gold. Phytochemistry 30:3861–3863. https://doi.org/10.1016/0031-9422(91)83424-J

    Article  CAS  Google Scholar 

  16. Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larkin PJ, Scowcroft WR (1981) Somaclonal variation -a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. https://doi.org/10.1007/BF02342540

    Article  PubMed  CAS  Google Scholar 

  18. Lestari EG (2006) In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversitas 7:297–301

    Article  Google Scholar 

  19. Lotfi M, Alan AR, Henning MJ et al (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128. https://doi.org/10.1007/s00299-003-0636-3

    Article  PubMed  CAS  Google Scholar 

  20. Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Org 104:283–300. https://doi.org/10.1007/s11240-010-9852-z

    Article  Google Scholar 

  21. Stewart JM (1981) In vitro fertilization and embryo rescue. Environ Exp Bot 21:301–315. https://doi.org/10.1016/0098-8472(81)90040-X

    Article  Google Scholar 

  22. Ji W, Li GR, Luo YX et al (2015) In vitro embryo rescue culture of F1 progenies from crosses between different ploidy grapes. Genet Mol Res 14:18616–18622

    Article  CAS  PubMed  Google Scholar 

  23. Borgato L, Conicella C, Pisani F et al (2007) Production and characterization of arboreous and fertile Solanum melongena + Solanum marginatum somatic hybrid plants. Planta 226:961–969. https://doi.org/10.1007/s00425-007-0542-y

    Article  PubMed  CAS  Google Scholar 

  24. Gx W, Tang Y, Yan H et al (2011) Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials. Plant Cell Rep 30:1811–1821. https://doi.org/10.1007/s00299-011-1088-9

    Article  CAS  Google Scholar 

  25. Prange ANS, Bartsch M, Meiners J et al (2012) Interspecific somatic hybrids between Cyclamen persicum and C. coum, two sexually incompatible species. Plant Cell Rep 31:723–735. https://doi.org/10.1007/s00299-011-1190-z

    Article  PubMed  CAS  Google Scholar 

  26. Yu Y, Ye W, He L et al (2013) Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Rep 32:1687–1701. https://doi.org/10.1007/s00299-013-1480-8

    Article  PubMed  CAS  Google Scholar 

  27. Liu S, Xia G (2014) The place of asymmetric somatic hybridization in wheat breeding. Plant Cell Rep 33:595–603. https://doi.org/10.1007/s00299-013-1552-9

    Article  PubMed  CAS  Google Scholar 

  28. Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887. https://doi.org/10.1104/pp.107.111096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Green JM, Owen MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59:5819–5829. https://doi.org/10.1021/jf101286h

    Article  PubMed  CAS  Google Scholar 

  30. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765. https://doi.org/10.1038/90824

    Article  PubMed  CAS  Google Scholar 

  31. Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992. https://doi.org/10.1073/pnas.0604882103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636. https://doi.org/10.1073/pnas.0709453104

    Article  PubMed  PubMed Central  Google Scholar 

  33. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84. https://doi.org/10.3389/fpls.2015.00084

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanghera GS, Wani SH, Hussain W et al (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43. https://doi.org/10.2174/138920211794520178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cardi T, Neal Stewart C (2016) Progress of targeted genome modification approaches in higher plants. Plant Cell Rep 35:1401–1416. https://doi.org/10.1007/s00299-016-1975-1

    Article  PubMed  CAS  Google Scholar 

  36. Subburaj S, Tu L, Jin YT et al (2016) Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Hortic Environ Biotechnol 57:531–543. https://doi.org/10.1007/s13580-016-0281-8

    Article  CAS  Google Scholar 

  37. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84. https://doi.org/10.1016/j.copbio.2014.11.007

    Article  PubMed  CAS  Google Scholar 

  38. Luo M, Gilbert B, Ayliffe M (2016) Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Rep 35:1439–1450. https://doi.org/10.1007/s00299-016-1989-8

    Article  PubMed  CAS  Google Scholar 

  39. Mahfouz MM, Cardi T, Neal Stewart C (2016) Next-generation precision genome engineering and plant biotechnology. Plant Cell Rep 35:1397–1399. https://doi.org/10.1007/s00299-016-2009-8

    Article  PubMed  CAS  Google Scholar 

  40. Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep 35:1469–1474. https://doi.org/10.1007/s00299-016-1982-2

    Article  PubMed  CAS  Google Scholar 

  41. Li M, Li X, Zhou Z et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377. https://doi.org/10.3389/fpls.2016.00377

    Article  PubMed  PubMed Central  Google Scholar 

  42. Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Org 129:153–160. https://doi.org/10.1007/s11240-016-1166-3

    Article  CAS  Google Scholar 

  43. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  PubMed  CAS  Google Scholar 

  44. Feng C, Yuan J, Wang R et al (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43:37–43. https://doi.org/10.1016/j.jgg.2015.10.002

    Article  PubMed  Google Scholar 

  45. Soyk S, Muller NA, Park SJ et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162–168. https://doi.org/10.1038/ng.3733

    Article  PubMed  CAS  Google Scholar 

  46. Wang S, Zhang S, Wang W et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476. https://doi.org/10.1007/s00299-015-1816-7

    Article  PubMed  CAS  Google Scholar 

  47. Zhou JP, Deng K, Cheng Y et al (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598. https://doi.org/10.3389/fpls.2017.01598

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lowder LG, Malzahn A, Qi Y (2018) Plant gene regulation using multiplex CRISPR-dCas9 artificial transcription factors. In: Lagrimini LM (ed) Maize: methods and protocols. Springer, New York, pp 197–214. https://doi.org/10.1007/978-1-4939-7315-6_12

    Chapter  Google Scholar 

  49. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620. https://doi.org/10.1007/s00299-011-1202-z

    Article  PubMed  CAS  Google Scholar 

  50. Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16:301. https://doi.org/10.1186/s12864-015-1504-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Imin N, Nizamidin M, Daniher D et al (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260. https://doi.org/10.1104/pp.104.055277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Turi CE, Axwik KE, Murch SJ (2014) In vitro conservation, phytochemistry, and medicinal activity of Artemisia tridentata Nutt.: metabolomics as a hypothesis-generating tool for plant tissue culture. Plant Growth Regul 74:239–250. https://doi.org/10.1007/s10725-014-9915-y

    Article  CAS  Google Scholar 

  53. Vasilev N, Boccard J, Lang G et al (2016) Structured plant metabolomics for the simultaneous exploration of multiple factors. Sci Rep 6:37390. https://doi.org/10.1038/srep37390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188. https://doi.org/10.1023/A:1006423110134

    Article  PubMed  CAS  Google Scholar 

  55. Nic-Can GI, De-la-Peña C (2014) Epigenetic advances on somatic embryogenesis of agronomical and important crops. In: Álvarez-Venegas R, De-la-Peña C, Casas-Mollano JA (eds) Epigenetics in plants of agronomic importance: fundamentals and applications. Springer, Cham, pp 91–109. https://doi.org/10.1007/978-3-319-07971-4_6

    Chapter  Google Scholar 

  56. De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM et al (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635. https://doi.org/10.3389/fpls.2015.00635

    Article  PubMed  PubMed Central  Google Scholar 

  57. Duarte-Aké F, Castillo-Castro E, Pool FB et al (2016) Physiological differences and changes in global DNA methylation levels in Agave angustifolia haw. Albino variant somaclones during the micropropagation process. Plant Cell Rep 25:2489–2502. https://doi.org/10.1007/s00299-016-2049-0

    Article  CAS  Google Scholar 

  58. Duarte-Aké F, De-la-Peña C (2016) Epigenetic advances in somatic embryogenesis in sequenced genome crops. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 81–102. https://doi.org/10.1007/978-3-319-33705-0_6

    Chapter  Google Scholar 

  59. Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146. https://doi.org/10.1007/s10725-010-9531-4

    Article  CAS  Google Scholar 

  60. Rival A, Ilbert P, Labeyrie A et al (2013) Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368. https://doi.org/10.1007/s00299-012-1369-y

    Article  PubMed  CAS  Google Scholar 

  61. Us-Camas R, Rivera-Solís G, Duarte-Aké F et al (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Org 118:187–201. https://doi.org/10.1007/s11240-014-0482-8

    Article  CAS  Google Scholar 

  62. Lau W, Fischbach MA, Osbourn A et al (2014) Key applications of plant metabolic engineering. PLoS Biol 12:e1001879. https://doi.org/10.1371/journal.pbio.1001879

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vanhercke T, El Tahchy A, Liu Q et al (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12:231–239. https://doi.org/10.1111/pbi.12131

    Article  PubMed  CAS  Google Scholar 

  64. Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647. https://doi.org/10.3389/fpls.2016.01647

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132. https://doi.org/10.1016/j.copbio.2016.04.012

    Article  PubMed  CAS  Google Scholar 

  66. Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim H, Kim S-T, Kim S-G et al (2015) Targeted genome editing for crop improvement. Plant Breed Biotechnol 3:283–290. https://doi.org/10.9787/PBB.2015.3.4.283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neftalí Ochoa-Alejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loyola-Vargas, V.M., Ochoa-Alejo, N. (2018). An Introduction to Plant Tissue Culture: Advances and Perspectives. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics