Skip to main content

Advertisement

Log in

Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  • Atsumi S, Liao JC (2008a) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

    Article  CAS  Google Scholar 

  • Atsumi S, Liao JC (2008b) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    Article  CAS  Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    Article  CAS  Google Scholar 

  • Bailey JE (1991) Toward a Science of Metabolic Engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  • Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085

    CAS  Google Scholar 

  • Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98

    Article  CAS  Google Scholar 

  • Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503

    Article  CAS  Google Scholar 

  • Chen JS, Hiu SF (1986) Acetone butanol isopropanol production by Clostridium beijerinckii. Biotechnol Lett 8:371–376

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12:141–150

    Article  CAS  Google Scholar 

  • Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775

    Article  CAS  Google Scholar 

  • Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315

    Article  CAS  Google Scholar 

  • Daniel R, Gottschalk G (1992) Growth temperature-dependent acitivity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha Regulon. FEMS Microbiol Lett 100:281–285

    CAS  Google Scholar 

  • Decker K, Plumbridge J, Boos W (1998) Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 27:381–390

    Article  CAS  Google Scholar 

  • Dewick PM (2002) The biosynthesis of C-5-C-25 terpenoid compounds. Nat Prod Rep 19:181–222

    Article  CAS  Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  CAS  Google Scholar 

  • Doan TTP, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P (2009) Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J Plant Physiol 166:787–796

    Article  CAS  Google Scholar 

  • Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161

    Article  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187

    Article  CAS  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304

    Article  CAS  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    Article  CAS  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Article  CAS  Google Scholar 

  • Friedman L, Rude M (2008) Process for producing low molecular weight hydrocarbons from renewable resources. WO/2008/113041

  • Goerke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  CAS  Google Scholar 

  • Gonzalez R, Campbell P, Wong M (2009) Production of ethanol from thin stillage by metabolically engineered Escherichia coli. Biotechnol Lett 32. doi:10.1007/s10529-009-0159-2

    Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245

    Article  CAS  Google Scholar 

  • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (Parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623

    Article  CAS  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Article  CAS  Google Scholar 

  • Hardiman T, Lemuth K, Keller MA, Reuss M, Siemann-Herzberg M (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132:359–374

    Article  CAS  Google Scholar 

  • Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694

    Article  CAS  Google Scholar 

  • Hernandez-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hirsch RL, Bezdek R, Wendling R (2006) Peaking of world oil production and its mitigation. AIChE J 52:2–8

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  • Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, Schirmer A, Brubaker S, Del Cardayre SB (2007) Production of fatty acids and derivatives thereof. WO/2007/136762

  • Kerr RA (2007) Global warming is changing the world. Science 316:188–190

    Article  CAS  Google Scholar 

  • Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 3:13

    Article  Google Scholar 

  • Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766–1771

    Article  CAS  Google Scholar 

  • Kimata K, Inada T, Tagami H, Aiba H (1998) A global repressor (MIc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol 29:1509–1519

    Article  CAS  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  CAS  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  Google Scholar 

  • Lu XF, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  Google Scholar 

  • Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234

    Article  CAS  Google Scholar 

  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125

    Article  CAS  Google Scholar 

  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Jones Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ehtnao, production: chromosomal integration of Zymomonas mobilis genes enconding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    CAS  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  Google Scholar 

  • Pleiss J (2006) The promise of synthetic biology. Appl Microbiol Biotechnol 73:735–739

    Article  CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  • Rodriguez-Moya M, Gonzalez R (2009) Systems biology approaches for the microbial production of biofuels. Biofuels 1. doi:10.4155/BFS.10.5

  • Sawers RG, Clark DP (2004) Fermentative pyruvate and acetyl-CoA metabolism. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, Webth edn. ASM Press, Washington

    Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    Article  CAS  Google Scholar 

  • Service RF (2009) Biofuels: ExxonMobil fuels venter’s efforts to run vehicles on algae-based oil. Science 325:379–379

    Article  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  Google Scholar 

  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98–105

    CAS  Google Scholar 

  • Stephanopoulos G (2002) Metabolic engineering: perspective of a chemical engineer. AIChE J 48:920–926

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  Google Scholar 

  • Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201

    Article  CAS  Google Scholar 

  • Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT (2001) Engineering a homo-ethanol pathway in Escherichia coli: Increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183:2979–2988

    Article  CAS  Google Scholar 

  • Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562

    Article  CAS  Google Scholar 

  • Trinh CT, Srienc F (2009) Metabolic Engineering of Escherichia coli for Efficient Conversion of Glycerol to Ethanol. Appl Environ Microbiol 75:6696–6705

    Article  CAS  Google Scholar 

  • Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643

    Article  CAS  Google Scholar 

  • Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotech 20:132–138

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31:1389–1398

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103

    Article  CAS  Google Scholar 

  • Zhang KC, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658

    Article  CAS  Google Scholar 

  • Zhu MM, Skraly FA, Cameron DC (2001) Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab Eng 3:218–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the U.S. National Science Foundation (CBET-0645188 and BES-0331388/BES-0601549) and the National Research Initiative of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service (2005-35504-16698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clomburg, J.M., Gonzalez, R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86, 419–434 (2010). https://doi.org/10.1007/s00253-010-2446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2446-1

Keywords

Navigation