Skip to main content
Log in

Multiscale Pores in TBCs for Lower Thermal Conductivity

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  Google Scholar 

  2. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22(5), p 646-658

    Article  Google Scholar 

  3. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  4. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898

    Article  Google Scholar 

  5. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  6. M. Peters, C. Leyens, U. Schulz, and W. Kaysser, EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines, Adv. Eng. Mater., 2001, 3(4), p 193-204

    Article  Google Scholar 

  7. R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348

    Article  Google Scholar 

  8. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57(4), p 980-992

    Article  Google Scholar 

  9. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  10. S. Paul, A. Cipitria, S.A. Tsipas, and T.W. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203(8), p 1069-1074

    Article  Google Scholar 

  11. T.W. Clyne, I.O. Golosnoy, J.C. Tan, and A.E. Markaki, Porous Materials for Thermal Management Under Extreme Conditions, Philos. Trans. A Math. Phys. Eng. Sci., 1838, 2006(364), p 125-146

    Google Scholar 

  12. D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163-164, p 67-74

    Article  Google Scholar 

  13. W. Shen, F.C. Wang, Q.B. Fan, and Z. Ma, Effects of Defects on the Effective Thermal Conductivity of Thermal Barrier Coatings, Appl. Math. Model., 2012, 36(5), p 1995-2002

    Article  Google Scholar 

  14. L. Lu, F.C. Wang, Z. Ma, and Q.B. Fan, Anisotropic Effect of Splat Interface on Thermal Conductivity of Plasma Sprayed YSZ Coating, Surf. Coat. Technol., 2013, 235, p 596-602

    Article  Google Scholar 

  15. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39, p 173-181

    Article  Google Scholar 

  16. M. Nakamichi, T. Takabatake, and H. Kawamura, Material Design of Ceramic Coating by Plasma Spray Method, Fusion Eng. Des., 1998, 41(1), p 143-147

    Article  Google Scholar 

  17. A. Ludwig, P. Quested, and G. Neuer, How to Find Thermophysical Material Property Data for Casting Simulations, Adv. Eng. Mater., 2001, 3(1-2), p 11-14

    Google Scholar 

  18. E.H. Lutz, Microstructure and Properties of Plasma Ceramics, J. Am. Ceram. Soc., 1994, 77(5), p 1274-1280

    Article  Google Scholar 

  19. Y. Tan, J.P. Longtin, S. Sampath, and H. Wang, Effect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ Coatings, J. Am. Ceram. Soc., 2009, 92(3), p 710-716

    Article  Google Scholar 

  20. W. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  21. O. Altun, Y.E. Boke, and S. Alanyali, Numerical Modeling of Thermal Conductivity of Air-Plasma-Sprayed Zirconia with Different Porosity Levels, ISI, Bilim. Tek. Derg., 2011, 31(1), p 77-84

    Google Scholar 

  22. F. Cernuschi, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, Modelling of Thermal Conductivity of Porous Materials: Application to Thick Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(9), p 2657-2667

    Article  Google Scholar 

  23. J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon, Oxford, 1881

    Google Scholar 

  24. V.D. Bruggeman, Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys., 1935, 24(5), p 636-664

    Article  Google Scholar 

  25. H. Xie, Y.C. Xie, G.J. Yang, C.X. Li, and C.J. Li, Modeling Thermal Conductivity of Thermally Sprayed Coatings with Intrasplat Cracks, J. Therm. Spray Technol., 2013, 22(8), p 1328-1336

    Article  Google Scholar 

  26. P. Carpio, Q. Blochet, B. Pateyron, L. Pawłowski, M.D. Salvador, A. Borrell, and E. Sánchez, Correlation of Thermal Conductivity of Suspension Plasma Sprayed Yttria Stabilized Zirconia Coatings with Some Microstructural Effects, Mater. Lett., 2013, 107, p 370-373

    Article  Google Scholar 

  27. R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9(2), p 204-209

    Article  Google Scholar 

  28. A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349

    Article  Google Scholar 

  29. E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859

    Article  Google Scholar 

  30. G. Pia, L. Casnedi, and U. Sanna, Porosity and Pore Size Distribution Influence on Thermal Conductivity of Yttria-Stabilized Zirconia: Experimental Findings and Model Predictions, Ceram. Int., 2016, 42(5), p 5802-5809

    Article  Google Scholar 

  31. G.R. Li, B.W. Lv, G.J. Yang, W.X. Zhang, C.X. Li, and C.J. Li, Relationship Between Lamellar Structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks, J. Therm. Spray Technol., 2015, 24(8), p 1355-1367

    Article  Google Scholar 

  32. Z. Živcová, E. Gregorová, W. Pabst, D.S. Smith, A. Michot, and C. Poulier, Thermal Conductivity of Porous Alumina Ceramics Prepared Using Starch as a Pore-Forming Agent, J. Eur. Ceram. Soc., 2009, 29(3), p 347-353

    Article  Google Scholar 

  33. Y. Asakuma and T. Yamamoto, Thermal Analysis of Porous Medium with Ellipsoidal Pores Using a Homogenization Method, Heat Mass Transfer., 2016, 52(10), p 2113-2117

    Article  Google Scholar 

  34. T. Lu, H. Stone, and M. Ashby, Heat Transfer in Open-Cell Metal Foams, Acta Mater., 1998, 46(10), p 3619-3635

    Article  Google Scholar 

  35. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  Google Scholar 

  36. Ö. Altun and Y.E. Böke, Heat Transfer Analyses of Thermal Barrier Coatings on a Metal Substrate, J. Therm. Sci. Technol., 2013, 33(2), p 101-109

    Google Scholar 

  37. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, Y. Zhou, and P.L. Wu, Influence of Pores on the Thermal Insulation Behavior of Thermal Barrier Coatings Prepared by Atmospheric Plasma Spray, Mater. Des., 2011, 32(1), p 36-47

    Article  Google Scholar 

  38. L. Wang, D.C. Li, J.S. Yang, F. Shao, X.H. Zhong, H.Y. Zhao, K. Yang, S.Y. Tao, and Y. Wang, Modeling of Thermal Properties and Failure of Thermal Barrier Coatings with the Use of Finite Element Methods: A Review, J. Eur. Ceram. Soc., 2016, 36(6), p 1313-1331

    Article  Google Scholar 

  39. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204

    Article  Google Scholar 

  40. T. Liu, X.T. Luo, X. Chen, G.J. Yang, C.X. Li, and C.J. Li, Morphology and Size Evolution of Interlamellar Two-Dimensional Pores in Plasma-Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C, J. Therm. Spray Technol., 2015, 24(5), p 739-748

    Article  Google Scholar 

  41. F. Cernuschi, I.O. Golosnoy, P. Bison, A. Moscatelli, R. Vassen, H.P. Bossmann, and S. Capelli, Microstructural Characterization of Porous Thermal Barrier Coatings by IR Gas Porosimetry and Sintering Forecasts, Acta Mater., 2013, 61(1), p 248-262

    Article  Google Scholar 

  42. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  43. G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala, and P. Sosnowy, Characterization of Microstructure and Thermal Properties of Gd2Zr2O7-Type Thermal Barrier Coating, J. Eur. Ceram. Soc., 2012, 32(9), p 2025-2034

    Article  Google Scholar 

  44. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J.E. Döring, and R. Vaßen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 76-83

    Article  Google Scholar 

  45. X. Xie, H. Guo, S. Gong, and H. Xu, Lanthanum-Titanium-Aluminum Oxide: A Novel Thermal Barrier Coating Material for Applications at 1300 °C, J. Eur. Ceram. Soc., 2011, 31(9), p 1677-1683

    Article  Google Scholar 

  46. C. Friedrich, R. Gadow, and T. Schirmer, Lanthanum Hexaaluminate—A New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings, J. Therm. Spray Technol., 2001, 10(4), p 592-598

    Article  Google Scholar 

  47. W. Pan, Z. Lü, K. Chen, X.Q. Huang, B. Wei, W.Y. Li, Z.H. Wang, and W.H. Su, Novel Polymer Fibers Prepared by Electrospinning for Use as the Pore-Former for the Anode of Solid Oxide Fuel Cell, Electrochim. Acta, 2010, 55(20), p 5538-5544

    Article  Google Scholar 

  48. L. Hu, C.A. Wang, Y. Huang, C. Sun, S. Lu, and Z. Hu, Control of Pore Channel Size During Freeze Casting of Porous YSZ Ceramics with Unidirectionally Aligned Channels Using Different Freezing Temperatures, J. Eur. Ceram. Soc., 2010, 30(16), p 3389-3396

    Article  Google Scholar 

  49. R.M. Novais, M.P. Seabra, and J.A. Labrincha, Ceramic Tiles with Controlled Porosity and Low Thermal Conductivity by Using Pore-Forming Agents, Ceram. Int., 2014, 40(8), p 11637-11648

    Article  Google Scholar 

  50. J. Hu, Z. Lü, K. Chen, X. Huang, N. Ai, X. Du, C. Fu, J. Wang, and W. Su, Effect of Composite Pore-Former on the Fabrication and Performance of Anode-Supported Membranes for SOFCs, J. Membr. Sci., 2008, 318(1), p 445-451

    Article  Google Scholar 

  51. S.F. Corbin and P.S. Apté, Engineered Porosity Via Tape Casting, Lamination and the Percolation of Pyrolyzable Particulates, J. Am. Ceram. Soc., 1999, 82(7), p 1693-1701

    Article  Google Scholar 

  52. J. Medřický, N. Curry, Z. Pala, M. Vilemova, T. Chraska, J. Johansson, and N. Markocsan, Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former, J. Therm. Spray Technol., 2015, 24(4), p 622-628

    Article  Google Scholar 

  53. T. Liu, S.L. Zhang, X.T. Luo, G.J. Yang, C.X. Li, and C.J. Li, High Heat Insulating Thermal Barrier Coating Designed with Large Two-Dimensional Inter-lamellar Pores, J. Therm. Spray Technol., 2016, 25(1-2), p 222-230

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Basic Research Program of China (No. 2013CB035701), the Fundamental Research Funds for the Central Universities, and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WW., Li, GR., Zhang, Q. et al. Multiscale Pores in TBCs for Lower Thermal Conductivity. J Therm Spray Tech 26, 1183–1197 (2017). https://doi.org/10.1007/s11666-017-0585-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0585-y

Keywords

Navigation