Skip to main content
Log in

High Entropy Oxides as Promising Materials for Thermal Barrier Topcoats: A Review

  • REVIEW
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Multi-layered thermal barrier coatings (TBCs) are deposited on gas turbine metallic components to protect them against high temperatures, oxidation, and corrosion. However, TBCs have limited working temperatures and lifetimes due to their material properties. Several approaches are tested to increase TBC topcoats' phase stability and properties. Increasing entropy to stabilize phases is a concept introduced in 2004 and required decreasing the Gibbs free energy. Many high entropy ceramics are developed for structural and functional applications, and different types of high entropy oxides (HEOs) are promising TBC ceramics due to their unique characteristics. HEOs are single-phase solid solutions that contain five or more cations, usually a mixture of transition metals and rare-earth elements. Due to the cocktail effect, the final material has a different behavior from its constituents, making it a viable method to improve the properties of traditional materials. Generally, high entropy materials are characterized by three additional phenomena: sluggish diffusion, severe lattice distortion, and high entropy. A review of possible improvements in the lifetime of TBC topcoats using different HEOs in terms of their composition, properties, and stability is presented here. Different HEOs are then examined, and various thermophysical properties, high-temperature stability, and sintering resistance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942.

    Article  Google Scholar 

  2. J. He, Advanced MCrAlY Alloys with Doubled TBC Lifetime, Surf Coat Technol, Elsevier B.V., (2022), 448, p 128931.

  3. C.U. Hardwicke and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576.

    Article  Google Scholar 

  4. M.I. Boulos, P.L. Fauchais, and J.V.R. Heberlein, Thermal Spray Fundamentals From Powder to Part Second Edition, (2021).

  5. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898.

    Article  CAS  Google Scholar 

  6. N. Rudrapatna, B. Lutz, and H. Kington, Next Generation Aps Porous Tbc for Gas Turbine Combustors, J. Eng. Gas. Turbine Power, 2022 https://doi.org/10.1115/1.4055919

    Article  Google Scholar 

  7. I. Gurrappa and A.S. Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, Surf. Coat. Technol., 2006, 201(6), p 3016-3029. https://doi.org/10.1016/j.surfcoat.2006.06.026

    Article  CAS  Google Scholar 

  8. R. Vaßen, E. Bakan, D.E. Mack, and O. Guillon, A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends, J. Therm. Spray Technol. Springer, 2022, 31(4), p 685-698.

    Article  Google Scholar 

  9. Z. Yan, B. Gainey, J. Gohn, D. Hariharan, J. Saputo, C. Schmidt, F. Caliari, S. Sampath, and B. Lawler, The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion, SAE Int. J. Adv. Current Pract. Mob., 2020, 2020(2), p 1786-1799.

    Article  Google Scholar 

  10. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol. Springer Sci. Bus. Med. LLC, 2008, 17(2), p 199-213.

    Article  CAS  Google Scholar 

  11. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Process. Prop. J. Therm. Spray Technol. Springer New York LLC, 2017, 26(6), p 992-1010.

    CAS  Google Scholar 

  12. X. Huibin and G. Hongbo, Thermal Barrier Coatings, Woodhead Pub Ltd, (2011)

  13. G. Witz, M. Schaudinn, J. Sopka, and T. Buecklers, Development of Advanced Thermal Barrier Coatings With Improved Temperature Capability, J. Eng. Gas Turbines Power, 2017, 139(8), p 081901.

    Article  Google Scholar 

  14. E.V. Dudnik, S.N. Lakiza, N.I. Hrechanyuk, A.K. Ruban, V.P. Red’ko, M.S. Hlabay, and A.B. Myloserdov, The Gd 2 Zr 2 O 7-Based Materials for Thermal Barrier Coatings, Powder Metall. Metal Ceram., 2018, 57, p 301-315.

    Article  CAS  Google Scholar 

  15. R. Vaßen, F. Traeger, and D. Stöver, Materials with Pyrochlore Structures and High Melting Points Show Promising Thermophysical Properties, Espe-Cially Interest. Candidates Are La Int. J. Appl. Ceram. Technol. Traeger Stöver, 2004, 1(4), p 351-361.

    Article  Google Scholar 

  16. D. Zhou, D.E. Mack, E. Bakan, G. Mauer, D. Sebold, O. Guillon, and R. Vaßen, Thermal Cycling Performances of Multilayered Yttria-Stabilized Zirconia/Gadolinium Zirconate Thermal Barrier Coatings, J. Am. Ceram. Soc., 2020, 103(3), p 2048-2061.

    Article  CAS  Google Scholar 

  17. S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910.

    Article  CAS  Google Scholar 

  18. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.P. Maria, Entropy-Stabilized Oxides, Nat. Commun. Nat. Publ. Group, 2015, 6, p 8485.

    Article  CAS  Google Scholar 

  19. K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, and L. An, A Five-Component Entropy-Stabilized Fluorite Oxide, J. Eur. Ceram. Soc. Elsevier Ltd, 2018, 38(11), p 4161-4164.

    Article  CAS  Google Scholar 

  20. S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-Entropy Ceramics: Review of Principles, Production and Applications, Mater. Sci. Eng. R. Rep., 2021, 1(146), p 100644.

    Article  Google Scholar 

  21. C. Oses, C. Toher, and S. Curtarolo, High-Entropy Ceramics, Nat. Rev. Mater., 2020, 5(4), p 295-309.

    Article  CAS  Google Scholar 

  22. J. Liu, G. Shao, D. Liu, K. Chen, K. Wang, B. Ma, K. Ren, and Y. Wang, Design and Synthesis of Chemically Complex Ceramics from the Perspective of Entropy, Mater. Today Adv. Elsevier Ltd, 2020, 8, 100114.

    Article  Google Scholar 

  23. K. Ren, Q. Wang, G. Shao, X. Zhao, and Y. Wang, Multicomponent High-Entropy Zirconates with Comprehensive Properties for Advanced Thermal Barrier Coating, Scr. Mater. Acta Mater. Inc, 2020, 178, p 382-386.

    CAS  Google Scholar 

  24. D. Beagle, B. Moran, M. Mcdufford, and M. Merine, GER-3620P Heavy-Duty Gas Turbine Operating and Maintenance Considerations, (2021), https://www.ge.com/gas-power/resources/technical-downloads/ger-3620p-operation-maintenance-considerations. Accessed 24 November 2022.

  25. N. Curry, N. Markocsan, X.H. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2011, 20, p 108-115.

    Article  CAS  Google Scholar 

  26. Z.Y. Wei, G.H. Meng, L. Chen, G.R. Li, M.J. Liu, W.X. Zhang, L.N. Zhao, Q. Zhang, X.D. Zhang, C.L. Wan, Z.X. Qu, L. Chen, J. Feng, L. Liu, H. Dong, Z.B. Bao, X.F. Zhao, X.F. Zhang, L. Guo, L. Wang, B. Cheng, W.W. Zhang, P.Y. Xu, G.J. Yang, H.N. Cai, H. Cui, Y. Wang, F.X. Ye, Z. Ma, W. Pan et al., Progress in Ceramic Materials and Structure Design toward Advanced Thermal Barrier Coatings, J. Adv. Ceram., 2022, 11(7), p 985-1068. https://doi.org/10.1007/s40145-022-0581-7

    Article  CAS  Google Scholar 

  27. M.J. Donachie and S.J. Donachie, Mechanical Engineers Handbook: Materials and Mechanical Design—Chapter 8: ‘Selection of Superalloys for Design, M. Kutz, Ed., 3rd ed., John Wiley & Sons, Inc., (2005).

  28. C. Mercer, J.R. Williams, D.R. Clarke, and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (T′) Yttria-Stabilized Zirconia, Proceed. R. Soc. A Math. Phys. Eng. Sci. R. Soc., 2007, 463(2081), p 1393-1408.

    CAS  Google Scholar 

  29. R.S. Lima, B.M.H. Guerreiro, and M. Aghasibeig, Microstructural Characterization and Room-Temperature Erosion Behavior of As-Deposited SPS EB-PVD and APS YSZ-Based TBCs, J. Therm. Spray Technol. Springer New York LLC, 2019, 28(1-2), p 223-232.

    Article  CAS  Google Scholar 

  30. J.W.D. Callister and D.G. Rethwisch, Materials Science and Engineering, Wiley, Nineth, 2013.

    Google Scholar 

  31. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284.

    Article  CAS  PubMed  Google Scholar 

  32. M. Parchovianský, I. Parchovianská, O. Hanzel, Z. Netriová, and A. Pakseresht, Phase Evaluation, Mechanical Properties and Thermal Behavior of Hot-Pressed LC-YSZ Composites for TBC Applications, Materials., 2022, 15(8), p 2839.

    Article  PubMed  PubMed Central  Google Scholar 

  33. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstruct. Thermal Aging J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744.

    Article  CAS  Google Scholar 

  34. S. Mahade, C. Ruelle, N. Curry, J. Holmberg, S. Björklund, N. Markocsan, and P. Nylén, Understanding the Effect of Material Composition and Microstructural Design on the Erosion Behavior of Plasma Sprayed Thermal Barrier Coatings, Appl. Surf. Sci., 2019, 15(488), p 170-184.

    Article  Google Scholar 

  35. A. Pakseresht, F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, M.R. Nafchi, M. Bazli, and K. Kirubaharan, Failure Mechanisms and Structure Tailoring of YSZ and New Candidates for Thermal Barrier Coatings: A Systematic Review, Mater. Des., 2022, 9, p 111044.

    Article  Google Scholar 

  36. B. Xiao, X. Huang, T. Robertson, Z. Tang, and R. Kearsey, Sintering Resistance of Suspension Plasma Sprayed 7YSZ TBC under Isothermal and Cyclic Oxidation, J. Eur. Ceram. Soc. Elsevier Ltd, 2020, 40(5), p 2030-2041.

    Article  CAS  Google Scholar 

  37. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia Thermal Barrier Coatings, Part II Coat. Bond. Rigid Substr. Acta Mater., 2009, 57(4), p 993-1003.

    CAS  Google Scholar 

  38. D.L. Poerschke, R.W. Jackson, and C.G. Levi, Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions, Annu. Rev. Mater. Res., 2017, 47, p 297-330. https://doi.org/10.1146/annurev-matsci-010917

    Article  CAS  Google Scholar 

  39. X. Shan, L. Luo, W. Chen, Z. Zou, F. Guo, L. He, A. Zhang, X. Zhao, and P. Xiao, Pore Filling Behavior of YSZ under CMAS Attack: Implications for Designing Corrosion-Resistant Thermal Barrier Coatings, J. Am. Ceram. Soc., 2018, 101(12), p 5756-5770.

    Article  CAS  Google Scholar 

  40. F.H. Stott, D.J. de Wet, and R. Taylor, Degradation of Thermal-Barrier Coatings at Very High Temperatures, MRS Bull., 1994, 19(10), p 46-49. https://doi.org/10.1557/S0883769400048223

    Article  CAS  Google Scholar 

  41. A.G. Evans and J.W. Hutchinson, The Mechanics of Coating Delamination in Thermal Gradients, Surf. Coat. Technol., 2007, 201(18), p 7905-7916.

    Article  CAS  Google Scholar 

  42. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A, 2008, 485(1-2), p 182-193.

    Article  Google Scholar 

  43. X. Zhou, T. Chen, J. Yuan, Z. Deng, H. Zhang, J. Jiang, and X. Cao, Failure of Plasma Sprayed Nano-Zirconia-Based Thermal Barrier Coatings Exposed to Molten CaO-MgO-Al2O3-SiO2 Deposits, J. Am. Ceram. Soc., 2019, 102(10), p 6357-6371.

    Article  CAS  Google Scholar 

  44. P.M. Kelly and C.J. Wauchope, The Tetragonal to Monoclinic Martensitic Transformation in Zirconia, Key Eng. Mater. Trans. Tech. Publ. Ltd, 1998, 153-154, p 97-124. https://doi.org/10.4028/www.scientific.net/KEM.153-154.97

    Article  CAS  Google Scholar 

  45. D.M. Lipkin, J.A. Krogstad, Y. Gao, C.A. Johnson, W.A. Nelson, and C.G. Levi, Phase Evolution upon Aging of Air-Plasma Sprayed T′-Zirconia Coatings: I—Synchrotron x-ray Diffraction, J. Am. Ceram. Soc., 2013, 96(1), p 290-298.

    Article  CAS  Google Scholar 

  46. A.G. Rabiei and A.G. Evans, Failure Mechanisms Associated with The Thermally Grown Oxide In Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976.

    Article  CAS  Google Scholar 

  47. R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9, p 204-209.

    Article  CAS  Google Scholar 

  48. R. Bjørk, H.L. Frandsen, and N. Pryds, Modeling the Microstructural Evolution during Constrained Sintering, J. Am. Ceram. Soc., 2015, 98(11), p 3490-3495.

    Article  Google Scholar 

  49. S. Taub and J. Kim, Constrained Sintering Stress-Review, EKC 2009 Proceedings of EU-Korea Conference on Science and Technology, Springer Proceedings in Physics 135, pp. 163-173 (2008)

  50. M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, Oxide Pyrochlores A Review, Prog. Solid State Chem., 1983, 15, p 55-143.

    Article  CAS  Google Scholar 

  51. H. Junjie, H. Guo, L. Jing, and T. Jingchao, New class of high-entropy defect fluorite oxides RE2 (Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2) 2O7 (RE= Y, Ho, Er, or Yb) as promising thermal barrier coatings, J. Eur. Ceram. Soc., 2021, 41(12), p 6080-6086.

    Article  Google Scholar 

  52. J. Shi, Z. Qu, and Q. Wang, Influence of Temperature on the Order-Disorder Transition in Gd2Zr2O7, Trans Tech Publications Ltd, Key Engineering Materials, 2016, p 386-389

    Google Scholar 

  53. J. Zhang, X. Guo, Y.G. Jung, L. Li, and J. Knapp, Lanthanum Zirconate Based Thermal Barrier Coatings: A Review, Surf. Coat. Technol., 2017, 25(323), p 18-29.

    Article  Google Scholar 

  54. Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, and T. Torigoe, Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(1), p 340-342.

    Article  CAS  Google Scholar 

  55. Y. Ozgurluk, K.M. Doleker, and A.C. Karaoglanli, Hot Corrosion Behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 Thermal Barrier Coatings Exposed to Molten Sulfate and Vanadate Salt, Appl. Surf. Sci., 2018, 30(438), p 96-113.

    Article  Google Scholar 

  56. H. Khan, Y. Iqbal, M. Khan, and Y. Zeng, Variations in the Thermal Conductivity of La2Zr2O7 and Gd2Zr2O7 with Variable La/Gd Concentrations, Phys. B Condens. Matter., 2021, 1(614), p 413018.

    Article  Google Scholar 

  57. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc. Am. Ceram. Soc., 2000, 83(8), p 2023-2028.

    Article  CAS  Google Scholar 

  58. G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala, and P. Sosnowy, Characterisation of the Microstructure and Thermal Properties of Nd 2Zr 2O 7 and Nd 2Zr 2O 7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2012, 32(9), p 2035-2042.

    Article  CAS  Google Scholar 

  59. D. Migas, G. Moskal, and S. Jucha, Hot Corrosion Behavior of Double-Phase Nd2Zr2O7-YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2022, 15(449), p 128955.

    Article  Google Scholar 

  60. K.M. Doleker, A.C. Karaoglanli, Y. Ozgurluk, and A. Kobayashi, Performance of Single YSZ, Gd2Zr2O7 and Double-Layered YSZ/Gd2Zr2O7 Thermal Barrier Coatings in Isothermal Oxidation Test Conditions, Vacuum, 2020, 1(177), p 109401.

    Article  Google Scholar 

  61. G. Moskal, A. Jasik, M. Mikuśkiewicz, and S. Jucha, Thermal Resistance Determination of Sm2Zr2O7+ 8YSZ Composite Type of TBC, Appl. Surf. Sci., 2020, 15(515), p 145998.

    Article  Google Scholar 

  62. H.X. Wu, Z. Ma, L. Liu, Y.B. Liu, and D.Y. Wang, Thermal Cycling Behavior and Bonding Strength of Single-Ceramic-Layer Sm2Zr2O7 and Double-Ceramic-Layer Sm2Zr2O7/8YSZ Thermal Barrier Coatings Deposited by Atmospheric Plasma Spraying, Ceram. Int. Elsevier Ltd, 2016, 42(11), p 12922-12927.

    Article  CAS  Google Scholar 

  63. J.W. Fergus, Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines, Metall. Mater. Trans. E Springer Sci. Bus. Med. LLC, 2014, 1(2), p 118-131.

    CAS  Google Scholar 

  64. J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, and M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc. Am. Ceram. Soc., 2002, 85(12), p 3031-3035.

    Article  CAS  Google Scholar 

  65. H. Wang, E. Tarwater, X. Zhang, Z. Sheng, and J.W. Fergus, “Pyrochlore Lanthanide Zirconates For Thermal Barrier Coatings,” n.d., http://ebookcentral.proquest.com/lib/ubishops/detail.action?docID=4206460.

  66. R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361.

    Article  Google Scholar 

  67. M.A. Helminiak, N.M. Yanar, F.S. Pettit, T.A. Taylor, and G.H. Meier, Factors Affecting the Microstructural Stability and Durability of Thermal Barrier Coatings Fabricated by Air Plasma Spraying, Mater. Corros. John Wiley Sons Ltd, 2012, 63(10), p 929-939. https://doi.org/10.1002/maco.201206646

    Article  CAS  Google Scholar 

  68. R.M. Leckie, S. Krämer, M. Rühle, and C.G. Levi, Thermochemical Compatibility Between Alumina and ZrO2-GdO 3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53(11), p 3281-3292.

    Article  CAS  Google Scholar 

  69. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and S. Joshi, Durability of Gadolinium Zirconate/YSZ Double-Layered Thermal Barrier Coatings under Different Thermal Cyclic Test Conditions, Materials., 2019, 12(14), p 2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. W. Ma, D. Mack, J. Malzbender, R. Vaßen, and D. Stöver, Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2008, 28(16), p 3071-3081.

    Article  CAS  Google Scholar 

  71. R. Vaßen, G. Pracht, and D. Stöver, New Thermal Barrier Coating Systems with a Graded Ceramic Coating, Proc. of the International Thermal Spray Conference, p 202-207 (2002)

  72. H. Chen, Y. Liu, Y. Gao, S. Tao, and H. Luo, Design, Preparation, and Characterization of Graded YSZ/La 2Zr2O7 Thermal Barrier Coatings, J. Am. Ceram. Soc., 2010, 93(6), p 1732-1740.

    Article  CAS  Google Scholar 

  73. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, (2014).

  74. J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759-1771.

    Article  CAS  Google Scholar 

  75. J.W. Yeh and S.J. Lin, Breakthrough Applications of High-Entropy Materials, J. Mater. Res. Cambridge Univ. Press, 2018, 33(19), p 3129-3137.

    CAS  Google Scholar 

  76. G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, and N.J. Zaluzec, Nature of the Chemical Bond and Prediction of Radiation Tolerance in Pyrochlore and Defect Fluorite Compounds, J. Solid State Chem., 2007, 180(4), p 1512-1518. https://doi.org/10.1016/j.jssc.2007.01.028

    Article  CAS  Google Scholar 

  77. H. Shahbazi, H. Vakilifard, R.B. Nair, A.C. Liberati, C. Moreau, and R.S. Lima, High Entropy Alloy (HEA) Bond Coats for Thermal Barrier Coatings (TBCs)—A Review, ITSC, 2023, 2023(22), p 659-666. https://doi.org/10.31399/asm.cp.itsc2023p0659

    Article  Google Scholar 

  78. H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, and H. Wang, High-Entropy Ceramics: Present Status, Challenges, and a Look Forward, J. Adv. Ceram., 2021, 10, p 385-441.

    Article  CAS  Google Scholar 

  79. A.J. Wright and J. Luo, A Step Forward from High-Entropy Ceramics to Compositionally Complex Ceramics: A New Perspective, J. Mater. Sci. Springer, 2020, 55(23), p 9812-9827.

    Article  CAS  Google Scholar 

  80. A. Sarkar, B. Breitung, and H. Hahn, High Entropy Oxides: The Role of Entropy, Enthalpy Synergy Scr. Mater. Acta Mater. Inc, 2020, 187, p 43-48.

    CAS  Google Scholar 

  81. D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe, Colossal Dielectric Constant in High Entropy Oxides, Phys. Status Solidi RRL-Rapid Res. Lett. Wiley Online Library, 2016, 10(4), p 328-333.

    Article  Google Scholar 

  82. Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, and Y. Zhou, (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A Defective Fluorite Structured High Entropy Ceramic with Low Thermal Conductivity and Close Thermal Expansion Coefficient to Al2O3, J. Mater. Sci. Technol. Chinese Soc. Metals, 2020, 39, p 167-172.

    Article  CAS  Google Scholar 

  83. L. Xu, H. Wang, L. Su, D. Lu, K. Peng, and H. Gao, A New Class of High-Entropy Fluorite Oxides with Tunable Expansion Coefficients, Low Therm. Cond. Except. Sinter. Res. J. Eur. Ceram. Soc. Elsevier Ltd, 2021, 41(13), p 6670-6676.

    CAS  Google Scholar 

  84. L. Spiridigliozzi, C. Ferone, R. Cioffi, and G. Dell’Agli, A Simple and Effective Predictor to Design Novel Fluorite-Structured High Entropy Oxides (HEOs), Acta Mater. Acta Mater. Inc, 2021, 202, p 181-189.

    CAS  Google Scholar 

  85. J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, and J. Luo, High-Entropy Fluorite Oxides, J. Eur. Ceram. Soc. Elsevier Ltd, 2018, 38(10), p 3578-3584.

    Article  CAS  Google Scholar 

  86. Y. Yang, H. Li, B. Duan, Q. Feng, C. Li, X. Lu, G. Chen, and C. Li, A Novel High Entropy Perovskite Oxide with co-Substitution in A and B sites (Ca1/3Sr1/3Ba1/3)(Y1/4Zr1/2Nb1/4) O3 Design, Synthesis and Structural Characterization, Ceram. Int., 2023, 49(5), p 7920-7926.

    Article  CAS  Google Scholar 

  87. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, and J. Luo, A New Class of High-Entropy Perovskite Oxides, Scr. Mater. Acta Mater. Inc., 2018, 142, p 116-120.

    CAS  Google Scholar 

  88. Z. Teng, L. Zhu, Y. Tan, S. Zeng, Y. Xia, Y. Wang, and H. Zhang, Synthesis and Structures of High-Entropy Pyrochlore Oxides, J. Eur. Ceram. Soc. Elsevier Ltd, 2020, 40(4), p 1639-1643.

    Article  CAS  Google Scholar 

  89. H. Liu, S. Pang, C. Liu, Y. Wu, and G. Zhang, High-entropy Yttrium Pyrochlore Ceramics with Glass-like Thermal Conductivity for Thermal Barrier Coating Application, J. Am. Ceram. Soc., 2022, 105(10), p 6437-6448. https://doi.org/10.1111/jace.18588

    Article  CAS  Google Scholar 

  90. D. Guo, F. Zhou, B. Xu, Y. Wang, and Y. Wang, Synthesis and Characterization of High-Entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 Nanopowders, Ceram. Int., 2022, 48(21), p 32532-32535. https://doi.org/10.1016/j.ceramint.2022.07.207

    Article  CAS  Google Scholar 

  91. Z. Teng, Y. Tan, S. Zeng, Y. Meng, C. Chen, X. Han, and H. Zhang, Preparation and Phase Evolution of High-Entropy Oxides A2B2O7 with Multiple Elements at A and B Sites, J. Eur. Ceram. Soc. Elsevier Ltd, 2021, 41(6), p 3614-3620.

    Article  CAS  Google Scholar 

  92. F. Li, L. Zhou, J.X. Liu, Y. Liang, and G.J. Zhang, High-Entropy Pyrochlores with Low Thermal Conductivity for Thermal Barrier Coating Materials, J. Adv. Ceram. Tsinghua Univ., 2019, 8(4), p 576-582.

    Article  Google Scholar 

  93. D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, O.V. Zaitseva, S.A. Gudkova, AYu. Starikov, D.A. Zherebtsov, A.A. Kirsanova, M. Häßner, and R. Niewa, High-Entropy Oxide Phases with Magnetoplumbite Structure, Ceram. Int., 2019, 45(10), p 12942-12948. https://doi.org/10.1016/j.ceramint.2019.03.221

    Article  CAS  Google Scholar 

  94. C. Zhao, F. Ding, Y. Lu, L. Chen, and Y.S. Hu, High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries, Angew. Chemie Int. Edition John Wiley Sons Ltd, 2020, 59(1), p 264-269. https://doi.org/10.1002/anie.201912171

    Article  CAS  Google Scholar 

  95. B. Musicó, Q. Wright, T.Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens, Tunable Magnetic Ordering through Cation Selection in Entropic Spinel Oxides, Phys. Rev. Mater., 2019, 3(10), p 104416.

    Article  Google Scholar 

  96. J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin, Synthesis and Microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 High Entropy Oxide Characterized by Spinel Structure, Mater. Lett., 2018, 216, p 32-36. https://doi.org/10.1016/j.matlet.2017.12.148

    Article  CAS  Google Scholar 

  97. T. Parida, A. Karati, K. Guruvidyathri, B.S. Murty, and G. Markandeyulu, Novel Rare-Earth and Transition Metal-Based Entropy Stabilized Oxides with Spinel Structure, Scr. Mater. Elsevier, 2020, 178, p 513-517.

    Article  CAS  Google Scholar 

  98. H. Chen, W. Lin, Z. Zhang, K. Jie, D.R. Mullins, X. Sang, S.-Z. Yang, C.J. Jafta, C.A. Bridges, X. Hu, R.R. Unocic, J. Fu, P. Zhang, and S. Dai, Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization, ACS Mater. Lett., 2019, 1(1), p 83-88. https://doi.org/10.1021/acsmaterialslett.9b00064

    Article  CAS  Google Scholar 

  99. D. Zhang, Y. Yu, X. Feng, Z. Tian, and R. Song, Thermal Barrier Coatings with High-Entropy Oxide as a Top Coat, Ceram. Int. Elsevier Ltd, 2022, 48(1), p 1349-1359.

    Article  CAS  Google Scholar 

  100. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, 2016, 19(6), p 349-362.

    Article  CAS  Google Scholar 

  101. G. Anand, A.P. Wynn, C.M. Handley, and C.L. Freeman, Phase Stability and Distortion in High-Entropy Oxides, Acta Mater. Acta Mater. Inc, 2018, 146, p 119-125.

    CAS  Google Scholar 

  102. Y.P. Wang, G.Y. Gan, W. Wang, Y. Yang, and B.Y. Tang, Ab Initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2) B2 (M= Nb, Mo, Cr), Phys. Status Solidi B, 2018, 255(8), p 1800011.

    Article  Google Scholar 

  103. T. Wen, B. Ye, H. Liu, S. Ning, C.Z. Wang, and Y. Chu, Formation Criterion for Binary Metal Diboride Solid Solutions Established through Combinatorial Methods, J. Am. Ceram. Soc., 2020, 103(5), p 3338-3348.

    Article  CAS  Google Scholar 

  104. Y. Yang, W. Wang, G.Y. Gan, X.F. Shi, and B.Y. Tang, Structural, Mechanical and Electronic Properties of (TaNbHfTiZr) C High Entropy Carbide Under Pressure: Ab Initio Investigation, Phys. B Condens. Matter., 2018, 1(550), p 163-170.

    Article  Google Scholar 

  105. D. Liu, T. Wen, B. Ye, and Y. Chu, Synthesis of Superfine High-Entropy Metal Diboride Powders, Scr. Mater. Acta Mater. Inc, 2019, 167, p 110-114.

    CAS  Google Scholar 

  106. T. Wen, H. Liu, B. Ye, D. Liu, and Y. Chu, High-Entropy Alumino-Silicides: A Novel Class of High-Entropy Ceramics, Sci. China Mater. Sci. China Press, 2020, 63(2), p 300-306.

    Article  CAS  Google Scholar 

  107. B. Ye, T. Wen, M.C. Nguyen, L. Hao, C.Z. Wang, and Y. Chu, First-Principles Study, Fabrication and Characterization of (Zr0.25Nb0.25Ti0 25V0.25) C High-Entropy Ceramics, Acta Mater., 2019, 15(170), p 15-23.

    Article  Google Scholar 

  108. H. Yang, G. Lin, H. Bu, H. Liu, L. Yang, W. Wang, X. Lin, C. Fu, Y. Wang, and C. Zeng, Single-Phase Forming Ability of High-Entropy Ceramics from a Size Disorder Perspective: A Case Study of (La0.2Eu0.2Gd0.2Y0.2Yb0.2) 2Zr2O7, Ceram. Int., 2022, 48(5), p 6956-6965.

    Article  CAS  Google Scholar 

  109. Q.F. He, Z.Y. Ding, Y.F. Ye, and Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, Minerals, Metals and Materials Society, JOM, 2017, p 2092-2098

    Google Scholar 

  110. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys. Elsevier Ltd, 2012, 132(2-3), p 233-238.

    Article  CAS  Google Scholar 

  111. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 1(61), p 1-93.

    Article  CAS  Google Scholar 

  112. P. Hutterer and M. Lepple, Influence of Composition on Structural Evolution of High-Entropy Zirconates—Cationic Radius Ratio and Atomic Size Difference, J. Am. Ceram. Soc., 2023, 106(2), p 1547-1560.

    Article  CAS  Google Scholar 

  113. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, and S. Curtarolo, High-Entropy High-Hardness Metal Carbides Discovered by Entropy Descriptors, Nat. Commun., 2018, 9(1), p 4980.

    Article  PubMed  PubMed Central  Google Scholar 

  114. K.C. Pitike, A. Macias, M. Eisenbach, C.A. Bridges, and V.R. Cooper, Computationally Accelerated Discovery of High Entropy Pyrochlore Oxides, Chem. Mater. Am. Chem. Soc., 2022, 34(4), p 1459-1472.

    CAS  Google Scholar 

  115. M.C. Gao, D.B. Miracle, D. Maurice, X. Yan, Y. Zhang, and J.A. Hawk, High-Entropy Functional Materials, J. Mater. Res. Cambridge Univ. Press, 2018, 33(19), p 3138-3155.

    CAS  Google Scholar 

  116. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk, Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci. Elsevier Ltd, 2017, 21(5), p 238-251.

    Article  CAS  Google Scholar 

  117. R.Z. Zhang and M.J. Reece, Review of High Entropy Ceramics: Design, Synthesis, Structure and Properties, J. Mater. Chem. A., 2019, 7(39), p 22148-22162.

    Article  CAS  Google Scholar 

  118. S.L. Liew, X.P. Ni, F. Wei, S.Y. Tan, M.T. Luai, P.C. Lim, S.L. Teo, N.B.M. Rafiq, J. Zhou, and S. Wang, High-Entropy Fluorite Oxides: Atomic Stabiliser Effects on Thermal-Mechanical Properties, J. Eur. Ceram. Soc., 2022, 42(14), p 6608-6613. https://doi.org/10.1016/j.jeurceramsoc.2022.07.026

    Article  CAS  Google Scholar 

  119. M. Du, S. Liu, Y. Ge, Z. Li, T. Wei, X. Yang, and J. Dong, Preparation and Effect of Grain Size on the Thermal Stability, Phase Transition, Mechanical Property, and Photocatalytic Property of Pyrochlore (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 High-Entropy Oxide, Ceram. Int., 2022, 48(14), p 20667-20674. https://doi.org/10.1016/j.ceramint.2022.04.046

    Article  CAS  Google Scholar 

  120. D. Berardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe, Controlled Jahn-Teller Distortion in (MgCoNiCuZn)O-Based High Entropy Oxides, J. Alloys Compd., 2017, 704, p 693-700. https://doi.org/10.1016/j.jallcom.2017.02.070

    Article  CAS  Google Scholar 

  121. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, and B. Breitung, High Entropy Oxides for Reversible Energy Storage, Nat. Commun., 2018 https://doi.org/10.1038/s41467-018-05774-5

    Article  PubMed  PubMed Central  Google Scholar 

  122. Y. Guo, S. Feng, J. Fu, Y. Yang, R. Zheng, H. Wang, and J. Li, Multi-Component Oxide Lens Glass with Ultra-High Mechanical Properties Inspired by the High-Entropy Concept, Ceram. Int., 2022 https://doi.org/10.1016/j.ceramint.2022.11.096

    Article  Google Scholar 

  123. J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire, D.L. Abernathy, Y. Ren, S.H. Lapidus, K. Page, H. Zheng, J.W. Freeland, J.D. Budai, and R.P. Hermann, Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide, Chem. Mater. Am. Chem. Soc., 2019, 31(10), p 3705-3711. https://doi.org/10.1021/acs.chemmater.9b00624

    Article  CAS  Google Scholar 

  124. R. Witte, A. Sarkar, L. Velasco, R. Kruk, R.A. Brand, B. Eggert, K. Ollefs, E. Weschke, H. Wende, and H. Hahn, Magnetic Properties of Rare-Earth and Transition Metal Based Perovskite Type High Entropy Oxides, J. Appl. Phys., 2020, 127(18), p 185109.

    Article  CAS  Google Scholar 

  125. D. Song, T. Song, U. Paik, G. Lyu, Y.G. Jung, H.B. Jeon, and Y.S. Oh, Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb) 2 (Ti, Zr, Hf) 2O7 for thermal barrier material, Mater. Des., 2021, 15(210), p 110059.

    Article  Google Scholar 

  126. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and Wear Behavior of AlxCo1 5CrFeNi1 5Tiy High-Entropy Alloys, Acta Mater. Elsevier, 2011, 59(16), p 6308-6317.

    Article  CAS  Google Scholar 

  127. Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, and Y. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O: A Novel High-Entropy Ceramic with Low Thermal Conductivity and Sluggish Grain Growth Rate, J. Mater. Sci. Technol. Chinese Soc. Metals, 2019, 35(11), p 2647-2651.

    Article  CAS  Google Scholar 

  128. L. Zhou, F. Li, J.X. Liu, Q. Hu, W. Bao, Y. Wu, X. Cao, F. Xu, and G.J. Zhang, High-Entropy Thermal Barrier Coating of Rare-Earth Zirconate: A Case Study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 Prepared by Atmospheric Plasma Spraying, J. Eur. Ceram. Soc. Elsevier Ltd, 2020, 40(15), p 5731-5739.

    Article  CAS  Google Scholar 

  129. N.J. Hess, B.D. Begg, S.D. Conradson, D.E. McCready, P.L. Gassman, and W.J. Weber, Spectroscopic Investigations of the Structural Phase Transition in Gd2(Ti1-YZry)2O7 Pyrochlores, J. Phys. Chem. B, 2002, 106(18), p 4663-4677.

    Article  CAS  Google Scholar 

  130. F. Qun-bo, Z. Feng, W. Fu-chi, and W. Lu, Molecular Dynamics Calculation of Thermal Expansion Coefficient of a Series of Rare-Earth Zirconates, Comput. Mater. Sci., 2009, 46(3), p 716-719.

    Article  Google Scholar 

  131. P.K. Schelling, S.R. Phillpot, and R.W. Grimes, Optimum Pyrochlore Compositions for Low Thermal Conductivity, Philos. Mag. Lett., 2004, 84(2), p 127-137.

    Article  CAS  Google Scholar 

  132. K.M. Doleker, Y. Ozgurluk, and A.C. Karaoglanli, TGO Growth and Kinetic Study of Single and Double Layered TBC Systems, Surf. Coat. Technol., 2021, 15(415), p 127135.

    Article  Google Scholar 

  133. S.M. Lakiza, V.P. Redko, and L.M. Lopato, Physicochemical Materials Research the Al2O3-ZrO2-Yb2O3 Phase Diagram I Isothermal Sections at 1250 And 1650 °C, Powder Metall. Metal Ceram., 2008, 47(4), p 60-69.

    Google Scholar 

  134. J. Sun, L. Guo, Y. Zhang, Y. Wang, K. Fan, and Y. Tang, Superior Phase Stability of High Entropy Oxide Ceramic in a Wide Temperature Range, J. Eur. Ceram. Soc. Elsevier Ltd, 2022, 42(12), p 5053-5064.

    Article  CAS  Google Scholar 

  135. A.J. Wright, Q. Wang, C. Huang, A. Nieto, R. Chen, and J. Luo, From High-Entropy Ceramics to Compositionally-Complex Ceramics: A Case Study of Fluorite Oxides, J. Eur. Ceram. Soc. Elsevier Ltd, 2020, 40(5), p 2120-2129.

    Article  CAS  Google Scholar 

  136. D. Song, M. Ryu, J. Pyeon, H.-B. Jeon, T. Song, U. Paik, B. Yang, Y.-G. Jung, and Y.-S. Oh, Phase-Reassembled High-Entropy Fluorites for Advanced Thermal Barrier Materials, Journal of Materials Research and Technology, Elsevier BV, 2023, 23, p 2740-2749.

    Article  CAS  Google Scholar 

  137. X. Luo, L. Luo, X. Zhao, H. Cai, S. Duan, C. Xu, S. Huang, H. Jin, and S. Hou, Single-Phase Rare-Earth High-Entropy Zirconates with Superior Thermal and Mechanical Properties, J Eur Ceram Soc, Elsevier Ltd, 2022, 42(5), p 2391-2399.

    Article  CAS  Google Scholar 

  138. T.Z. Tu, J.X. Liu, L. Zhou, Y. Liang, and G.J. Zhang, Graceful Behavior during CMAS Corrosion of a High-Entropy Rare-Earth Zirconate for Thermal Barrier Coating Material, J Eur Ceram Soc, Elsevier Ltd, 2022, 42(2), p 649-657.

    Article  CAS  Google Scholar 

  139. Y. Sun, H.-R. Mao, and P. Shen, Inhibition of Hotspot Formation by Alumina Addition in Flash Sintering of (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 High-Entropy Ceramic, J Eur Ceram Soc, 2022, doi:https://doi.org/10.1016/j.jeurceramsoc.2022.08.015.

  140. Z.G. Liu, J.H. Ouyang, K.N. Sun, Y. Zhou, and J. Xiang, Preparation, Structure and Electrical Conductivity of Pyrochlore-Type Gd1-XEu2xSm1-XZr2O7 Ceramics with a Constant Lattice Parameter, Electrochim. Acta, 2011, 56(20), p 7045-7050.

    Article  CAS  Google Scholar 

  141. X. Luo, R. Huang, C. Xu, S. Huang, S. Hou, and H. Jin, Designing High-Entropy Rare-Earth Zirconates with Tunable Thermophysical Properties for Thermal Barrier Coatings, J Alloys Compd, 2022, p 166714, doi:https://doi.org/10.1016/j.jallcom.2022.166714.

  142. M. Ma, Y. Han, Z. Zhao, J. Feng, and Y. Chu, Ultrafine-Grained High-Entropy Zirconates with Superior Mechanical and Thermal Properties, J Mat, 2022 https://doi.org/10.1016/j.jmat.2022.09.014

    Article  Google Scholar 

  143. D. Liu, S. Zhang, and Z. Wu, Lattice Energy Estimation for Inorganic Ionic Crystals, Inorg Chem, American Chemical Society, 2003, 42(7), p 2465-2469. https://doi.org/10.1021/ic025902a

    Article  CAS  Google Scholar 

  144. L. Glasser, Lattice Energies of Crystals with Multiple Ions: A Generalized Kapustinskii Equation, Inorg Chem, American Chemical Society, 1995, 34(20), p 4935-4936. https://doi.org/10.1021/ic00124a003

    Article  CAS  Google Scholar 

  145. A.F. Kapustinskii, Lattice Energy of Ionic Crystals, Q. Rev. Chem. Soc., 1956, 75(4), p 455-658.

    Google Scholar 

  146. K.V.G. Kutty, S. Rajagopalan, C.K. Mathews, and U.V. Varadaraju, Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlores, Mater Res Bull, Elsevier, 1994, 29(7), p 759-766.

    Article  CAS  Google Scholar 

  147. J. Pannetier, Energie Electrostatique Des Reseaux Pyrochlore, Solids, Pergamon Press, Phys. Chem, 1973.

    Book  Google Scholar 

  148. R.L. Matcha, Theory of the Chemical Bond. 6 Accurate Relationship between Bond Energies and Electronegativity Differences, J Am Chem Soc, American Chemical Society, 1983, 105(15), p 4859-4862, doi:https://doi.org/10.1021/ja00353a002.

  149. S. Deng, G. He, Z. Yang, J. Wang, J. Li, and L. Jiang, Calcium-Magnesium-Alumina-Silicate (CMAS) Resistant High Entropy Ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for Thermal Barrier Coatings, J Mater Sci Technol, Chinese Society of Metals, 2022, 107, p 259-265.

  150. R. Yan, W. Liang, Q. Miao, H. Zhao, R. Liu, J. Li, K. Zang, M. Dong, X. He, X. Gao, and Y. Song, Mechanical, Thermal and CMAS Resistance Properties of High-Entropy (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 Ceramics, Ceram Int, Elsevier Ltd, 2023.

  151. X. Luo, S. Huang, R. Huang, C. Xu, S. Hou, and H. Jin, Highly Anti-Sintering and Toughened Pyrochlore (Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7 High-Entropy Ceramic for Advanced Thermal Barrier Coatings, Ceram Int, Elsevier Ltd, 2023.

  152. X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications, Adv. Mater., 2003, 15(17), p 1438-1442.

    Article  CAS  Google Scholar 

  153. S.Y. Park, J.H. Kim, M.C. Kim, H.S. Song, and C.G. Park, Microscopic Observation of Degradation Behavior in Yttria and Ceria Stabilized Zirconia Thermal Barrier Coatings under Hot Corrosion, Surf. Coat. Technol., 2005, 190(2), p 357-365. https://doi.org/10.1016/j.surfcoat.2004.04.065

    Article  CAS  Google Scholar 

  154. W.B. Gong, C.K. Sha, D.Q. Sun, and W.Q. Wang, Microstructures and Thermal Insulation Capability of Plasma-Sprayed Nanostructured Ceria Stabilized Zirconia Coatings, Surf. Coat. Technol., 2006, 201(6), p 3109-3115. https://doi.org/10.1016/j.surfcoat.2006.06.041

    Article  CAS  Google Scholar 

  155. D. Jingmin, L. Kui, S. Weiwei, C. Xiaoge, L. Mengwei, X. Chuanyue, W. Zhuang, L. Xinchun, W. Bin, and Z. Hongsong, Influence of Ta2O5 Addition on Thermophysical Performance of Sm2Ce2O7, J. Mater. Eng. Perform. Springer, 2021, 30(8), p 5947-5952.

    Article  Google Scholar 

  156. H. Dai, X. Zhong, J. Li, J. Meng, and X. Cao, Neodymium-Cerium Oxide as New Thermal Barrier Coating Material, Surf. Coat. Technol., 2006, 201(6), p 2527-2533. https://doi.org/10.1016/j.surfcoat.2006.04.016

    Article  CAS  Google Scholar 

  157. A. Tang, B. Li, W. Sang, Z. Hongsong, X. Chen, H. Zhang, and B. Ren, Thermophysical Performances of High-Entropy (La0.2Nd0.2Yb0.2Y0.2Sm02)2Ce2O7 and (La0.2Nd0.2Yb0.2Y0.2Lu0.2)2Ce2O7 Oxides, Ceram. Int. Elsevier Ltd, 2022, 48(4), p 5574-5580.

    Article  CAS  Google Scholar 

  158. L. Lilin, L. Bin, S. Weiwei, Z. Hongsong, Z. Haoming, C. Xiaoge, and T. An, Thermophysical Properties of (La0.25Sm0.25Gd0.25Yb0.25)2Ce2+xO7+2x(X=0.1, 0.2, and 0.3) High Entropy Oxides, Ceram. Int. Elsevier Ltd, 2022, 48(11), p 14980-14986.

    Article  Google Scholar 

  159. H. Zhang, L. Zhao, W. Sang, X. Chen, A. Tang, and H. Zhang, Thermophysical Performances of (La1/6Nd1/6Yb1/6Y1/6Sm1/6Lu1/6)2Ce2O7 High-Entropy Ceramics for Thermal Barrier Coating Applications, Ceram. Int. Elsevier Ltd, 2022, 48(2), p 1512-1521.

    Article  CAS  Google Scholar 

  160. L. Xu, L. Su, H. Wang, H. Gao, D. Lu, K. Peng, M. Niu, and Z. Cai, Tuning Stoichiometry of High-Entropy Oxides for Tailorable Thermal Expansion Coefficients and Low Thermal Conductivity, J. Am. Ceram. Soc. John Wiley Sons. Inc., 2022, 105(2), p 1548-1557.

    Article  CAS  Google Scholar 

  161. H. Chen, Z. Zhao, H. Xiang, F.Z. Dai, W. Xu, K. Sun, J. Liu, and Y. Zhou, High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2) 3Al5O12: A novel high temperature stable thermal barrier material, J. Mater. Sci. Technol., 2020, 1(48), p 57-62.

    Article  Google Scholar 

  162. S. Gu, S. Zhang, F. Liu, Y. Liang, and W. Li, Microstructure and Thermal Shock Performance of Y2Hf2O7 Coating Deposited on SiC Coated C/C Composite, Appl. Surf. Sci., 2018, 455, p 849-855. https://doi.org/10.1016/j.apsusc.2018.06.073

    Article  CAS  Google Scholar 

  163. L. Cong, S. Gu, and W. Li, Thermophysical Properties of a Novel High Entropy Hafnate Ceramic, J. Mater. Sci. Technol., 2021, 20(85), p 152-157.

    Article  Google Scholar 

  164. L. Cong, W. Li, J. Wang, S. Gu, and S. Zhang, High-Entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 Ceramic: A Promising Thermal Barrier Coating Material, J. Mater. Sci. Technol. Chinese Soc. Metals, 2022, 101, p 199-204.

    Article  CAS  Google Scholar 

  165. F. Ye, F. Meng, T. Luo, and H. Qi, The CMAS Corrosion Behavior of High-Entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 Hafnate Material Prepared by Ultrafast High-Temperature Sintering (UHS), J. Eur. Ceram. Soc. Elsevier Ltd, 2023, 43(5), p 2185-2195.

    Article  CAS  Google Scholar 

  166. J. Zhu, X. Meng, J. Xu, P. Zhang, Z. Lou, M.J. Reece, and F. Gao, Ultra-Low Thermal Conductivity and Enhanced Mechanical Properties of High-Entropy Rare Earth Niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb), J. Eur. Ceram. Soc. Elsevier Ltd, 2021, 41(1), p 1052-1057.

    Article  CAS  Google Scholar 

  167. Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, and Y. Zhou, High Entropy Defective Fluorite Structured Rare-Earth Niobates and Tantalates for Thermal Barrier Applications, J. Adv. Ceram. Tsinghua Univ., 2020, 9(3), p 303-311.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the project titled Engineering the Next Generation of Thermal Barrier Coatings (TBCs) Via Thermal Spraying, supported by the National Research Council of Canada (NRC) Surftec Industrial R&D Group, as well as, the NRC’s National Program Office. The authors would like to acknowledge the NRC, as well as, the Surftec Industrial R&D Group members that supported this investigation and publication, the Consortium de recherche et d’innovation en transformation métallique (CRITM) for funding through its Support Program for Research and Innovation Organizations (PSO), and NRC’s academic collaborator to this project, Concordia University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamideh Vakilifard or Christian Moreau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2023 International Thermal Spray Conference, held May 22-25, 2023, in Québec City, Canada, and has been expanded from the original presentation. The issue was organized by Giovanni Bolelli, University of Modena and Reggio Emilia (Lead Editor); Emine Bakan, Forschungszentrum Jülich GmbH; Partha Pratim Bandyopadhyay, Indian Institute of Technology, Karaghpur; Šárka Houdková, University of West Bohemia; Yuji Ichikawa, Tohoku University; Heli Koivuluoto, Tampere University; Yuk-Chiu Lau, General Electric Power (Retired); Hua Li, Ningbo Institute of Materials Technology and Engineering, CAS; Dheepa Srinivasan, Pratt & Whitney; and Filofteia-Laura Toma, Fraunhofer Institute for Material and Beam Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakilifard, H., Shahbazi, H., Liberati, A.C. et al. High Entropy Oxides as Promising Materials for Thermal Barrier Topcoats: A Review. J Therm Spray Tech 33, 447–470 (2024). https://doi.org/10.1007/s11666-024-01744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01744-0

Keywords

Navigation