Skip to main content
Log in

Relationship Between Lamellar Structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The elastic modulus of plasma-sprayed top coating plays an important role in thermal cyclic lifetime of thermally sprayed thermal barrier coatings (TBCs), since the thermal stress is determined by the substrate/coating thermal mismatch and the elastic modulus of top coating. Consequently, much attention had been paid to understanding the relationship between elastic modulus and lamellar structure of top coating. However, neglecting the intra-splat cracks connected with inter-splat pores often leads to poor prediction in in-plane modulus. In this study, a modified model taking account of intra-splat cracks and other main structural characteristics of plasma-sprayed yttria-stabilized zirconia coating was proposed. Based on establishing the relationship between elastic modulus and structural parameters of basic unit, effects of structural parameters on the elastic modulus of coatings were discussed. The predicted results are well consistent with experimental data on coating elastic modulus in both out-plane direction and in-plane direction. This study would benefit the further comprehensive understanding of failure mechanism of TBCs in thermal cyclic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.T. Demasimarcin and D.K. Gupta, Protective Coatings in the Gas-Turbine Engine, Surf. Coat. Technol., 1994, 68, p 1-9

    Article  Google Scholar 

  2. T.V.M. Andritschky, W. Fischer, H.P. Buchkremer, and D. Stover, Effects of Deposition Temperature and Thermal Cycling on Residual Stress State in Zirconia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1999, 120, p 103-111

    Google Scholar 

  3. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  4. M. Matsumoto, H. Takayama, D. Yokoe, K. Mukai, H. Matsubara, Y. Kagiya, and Y. Sugita, Thermal Cycle Behavior of Plasma Sprayed La2O3, Y2O3 Stabilized ZrO2 Coatings, Scr. Mater., 2006, 54(12), p 2035-2039

    Article  Google Scholar 

  5. S. Asghari, M. Salimi, and M. Salehi, Modeling Nonlinear Elastic Behavior of Plasma Sprayed Ceramics and Its Evolution with Sintering, Mater. Sci. Eng. A, 2010, 527(16-17), p 4241-4249

    Article  Google Scholar 

  6. Y.S. Tian, C.Z. Chen, D.Y. Wang, and Q.M. Ji, Recent Developments in Zirconia Thermal Barrier Coatings, Surf. Rev. Lett., 2005, 12(3), p 369-378

    Article  Google Scholar 

  7. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  Google Scholar 

  8. C.U. Hardwicke and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576

    Article  Google Scholar 

  9. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  10. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  11. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  12. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57(4), p 980-992

    Article  Google Scholar 

  13. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  14. J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49(9), p 1565-1575

    Article  Google Scholar 

  15. K.T. Voisey and T.W. Clyne, Laser Drilling of Cooling Holes Through Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 176(3), p 296-306

    Article  Google Scholar 

  16. R.S. Lima, S.E. Kruger, G. Lamouche, and B.R. Marple, Elastic Modulus Measurements Via Laser-Ultrasonic and Knoop Indentation Techniques in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2005, 14(1), p 52-60

    Article  Google Scholar 

  17. S. Guo and Y. Kagawa, Young’s Moduli of Zirconia Top-Coat and Thermally Grown Oxide in a Plasma-Sprayed Thermal Barrier Coating System, Scr. Mater., 2004, 50(11), p 1401-1406

    Article  Google Scholar 

  18. Y. Tan, A. Shyam, W.B. Choi, E. Lara-Curzio, and S. Sampath, Anisotropic Elastic Properties of Thermal Spray Coatings Determined Via Resonant Ultrasound Spectroscopy, Acta Mater., 2010, 58(16), p 5305-5315

    Article  Google Scholar 

  19. D.M. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9(2), p 175-180

    Article  Google Scholar 

  20. H.J. Kim and Y.G. Kweon, Elastic Modulus of Plasma-Sprayed Coatings Determined by Indentation and Bend Tests, Thin Solid Films, 1999, 342(1-2), p 201-206

    Article  Google Scholar 

  21. R.S. Lima, A. Kucuk, and C.C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135(2-3), p 166-172

    Article  Google Scholar 

  22. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093-2099

    Article  Google Scholar 

  23. M. Shinozaki, T.W. Clyne, and A. Methodology, Based on Sintering-Induced Stiffening, for Prediction of the Spallation Lifetime of Plasma-Sprayed Coatings, Acta Mater., 2013, 61(2), p 579-588

    Article  Google Scholar 

  24. H. Xie, Y.C. Xie, G.J. Yang, C.X. Li, and C.J. Li, Modeling Thermal Conductivity of Thermally Sprayed Coatings with Intrasplat Cracks, J. Therm. Spray Technol., 2013, 22(8), p 1328-1336

    Article  Google Scholar 

  25. F. Kroupa and J. Dubsky, Pressure Dependence of Young’s Moduli of Thermal Sprayed Materials, Scr. Mater., 1999, 40(11), p 1249-1254

    Article  Google Scholar 

  26. I. Sevostianov and M. Kachanov, Modeling of The Anisotropic Elastic Properties of Plasma-Sprayed Coatings in Relation to Their Microstructure, Acta Mater., 2000, 48(6), p 1361-1370

    Article  Google Scholar 

  27. J.H. Qiao, R. Bolot, and H.L. Liao, Finite Element Modeling of the Elastic Modulus of Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 220, p 170-173

    Article  Google Scholar 

  28. K. Bobzin, N. Kopp, T. Warda, and M. Ote, Determination of the Effective Properties of Thermal Spray Coatings Using 2D and 3D Models, J. Therm. Spray Technol., 2012, 21(6), p 1269-1277

    Article  Google Scholar 

  29. L. Li, N. Hitchman, and J. Knapp, Failure of Thermal Barrier Coatings Subjected to CMAS Attack, J. Therm. Spray Technol., 2010, 19(1-2), p 148-155

    Article  Google Scholar 

  30. P. Mohan, T. Patterson, B. Yao, and Y. Sohn, Degradation of Thermal Barrier Coatings by Fuel Impurities and CMAS: Thermochemical Interactions and Mitigation Approaches, J. Therm. Spray Technol., 2010, 19(1-2), p 156-167

    Article  Google Scholar 

  31. A.D. Gledhill, K.M. Reddy, J.M. Drexler, K. Shinoda, S. Sampath, and N.P. Padture, Mitigation of Damage from Molten Fly Ash to Air-Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2011, 528(24), p 7214-7221

    Article  Google Scholar 

  32. J. Wu, H.B. Guo, Y.Z. Gao, and S.K. Gong, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, J. Eur. Ceram. Soc., 2011, 31(10), p 1881-1888

    Article  Google Scholar 

  33. J. Wu, H.B. Guo, M. Abbas, and S.K. Gong, Evaluation of Plasma Sprayed YSZ Thermal Barrier Coatings with the CMAS Deposits Infiltration Using Impedance Spectroscopy, Prog. Natl. Sci. Mater., 2012, 22(1), p 40-47

    Article  Google Scholar 

  34. W.S. Li, H.Y. Zhao, X.H. Zhong, L. Wang, and S.Y. Tao, Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS), J. Therm. Spray Technol., 2014, 23(6), p 975-983

    Article  Google Scholar 

  35. C.J. Li, C.X. Li, and M.J. Ning, Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC, Vacuum, 2004, 73(3-4), p 699-703

    Article  Google Scholar 

  36. C.J. Li, X.J. Ning, and C.X. Li, Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells, Surf. Coat. Technol., 2005, 190(1), p 60-64

    Article  Google Scholar 

  37. X.J. Ning, C.X. Li, C.J. Li, and G.J. Yang, Modification of Microstructure and Electrical Conductivity of Plasma-Sprayed YSZ Deposit Through Post-densification Process, Mater. Sci. Eng. A, 2006, 428(1-2), p 98-105

    Article  Google Scholar 

  38. C. Zhang, W.Y. Li, M.P. Planche, C.X. Li, H.L. Liao, C.J. Li, and C. Coddet, Study on Gas Permeation Behaviour Through Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Coating, Surf. Coat. Technol., 2008, 202(20), p 5055-5061

    Article  Google Scholar 

  39. C.X. Li, C.J. Li, and G.J. Yang, Development of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Assembled with Different Functional Layers by Atmospheric Plasma-Spraying, J. Therm. Spray Technol., 2009, 18(1), p 83-89

    Article  Google Scholar 

  40. C.J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32(4), p 997-1004

    Article  Google Scholar 

  41. M. Moss, D.M. Schuster, and W.L. Cyrus, Properties of Filament-Reinforced Plasma-Sprayed Alumina, Am. Ceram. Soc. Bull., 1972, 51(2), p 167

    Google Scholar 

  42. R.C. Tucker, Structure Property Relationships in Deposits Produced by Plasma Spray and Detonation Gun Techniques, J. Vac. Sci. Technol., 1974, 11(4), p 725-734

    Article  Google Scholar 

  43. K.S. Shi, Z.Y. Qian, and M.S. Zhuang, Microstructure and Properties of Sprayed Ceramic Coating, J. Am. Ceram. Soc., 1988, 71(11), p 924-929

    Article  Google Scholar 

  44. N.N. Ault, Characteristics of Refractory Oxide Coatings Produced by Flame-Spraying, J. Am. Ceram. Soc., 1957, 40(3), p 69-74

    Article  Google Scholar 

  45. W.X. Zhang, T.J. Wang, and L.X. Li, Numerical Analysis of the Transverse Strengthening Behavior of Fiber-Reinforced Metal Matrix Composites, Comput. Mater. Sci., 2007, 39(3), p 684-696

    Article  Google Scholar 

  46. X.J. Lu and P. Xiao, Constrained Sintering of YSZ/Al2O3 Composite Coatings on Metal Substrates Produced from Eletrophoretic Deposition, J. Eur. Ceram. Soc., 2007, 27(7), p 2613-2621

    Article  Google Scholar 

  47. C.J. Li and W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution, Mater. Sci. Eng. A, 2004, 386(1-2), p 10-19

    Article  Google Scholar 

  48. Y. Li, C.J. Li, G.J. Yang, and C.X. Li, Relation Between Microstructure and Thermal Conductivity of Plasma-Sprayed 8YSZ Coating, Int. J. Mod. Phys. B, 2010, 24(15-16), p 3017-3022

    Article  Google Scholar 

  49. Y.Z. Xing, Y. Li, C.J. Li, C.X. Li, and G.J. Yang, Influence of Substrate Temperature on Microcracks Formation in Plasma-Sprayed Yttria-Stabilized Zirconia Splats, Key Eng. Mater., 2008, 373-374, p 69-72

    Article  Google Scholar 

  50. G.J. Yang, C.X. Li, and C.J. Li, Characterization of Nonmelted Particles and Molten Splats in Plasma-Sprayed Al2O3 Coatings by a Combination of Scanning Electron Microscopy, X-ray Diffraction Analysis, and Confocal Raman Analysis, J. Therm. Spray Technol., 2012, 22, p 131-137

    Article  Google Scholar 

  51. G.J. Yang and C.X. Li, S. H, Y. Z. Xing, E. J. Yang and C. J. Li. Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  52. C.J. Li, W.Z. Wang, and Y. He, Measurement of Fracture Toughness of Plasma-Sprayed Al2O3 Coatings Using a Tapered Double Cantilever Beam Method, J. Am. Ceram. Soc., 2003, 86(8), p 1437-1439

    Article  Google Scholar 

  53. C. Zhang, C.J. Li, G. Zhang, X.J. Ning, C.X. Li, H.L. Liao, and C. Coddet, Ionic Conductivity and Its Temperature Dependence of Atmospheric Plasma-Sprayed YttriaStabilized Zirconia Electrolyte, Mater. Sci. Eng. B, 2007, 137(1-3), p 24-30

    Article  Google Scholar 

  54. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia Thermal Barrier Coatings. Part II: Coatings Bonded to A Rigid Substrate, Acta Mater., 2009, 57(4), p 993-1003

    Article  Google Scholar 

  55. G. Mauer, A. Hospach, N. Zotov, and R. Vassen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2-3), p 83-89

    Article  Google Scholar 

  56. K. von Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743

    Article  Google Scholar 

  57. X.L. Fan, R. Xu, W.X. Zhang, and T.J. Wang, Effect of Periodic Surface Cracks on the Interfacial Fracture of Thermal Barrier Coating System, Appl. Surf. Sci., 2012, 258, p 9816-9823

    Article  Google Scholar 

  58. R. Xu, X.L. Fan, W.X. Zhang, Y. Song, and T.J. Wang, Effects of Geometrical and Material Parameters of Top and Bond Coats on the Interfacial Fracture in Thermal Barrier Coating System, Mater. Des., 2013, 47, p 566-574

    Article  Google Scholar 

  59. M. Vilemova, J. Matejicek, R. Musalek, and J. Nohava, Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings, J. Therm. Spray Technol., 2012, 21(3-4), p 372-382

    Article  Google Scholar 

Download references

Acknowledgments

The present project was supported by the National Basic Research Program of China (Nos. 2013CB035701, 2012CB625100), National Natural Science Foundation of China (Nos. 11472203, 11172227, 11321062), the Fundamental Research Funds for the Central Universities, the National Program for Support of Top-notch Young Professionals, and Program for New Century Excellent Talents in University (NCET-13-0466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guan-Jun Yang, Wei-Xu Zhang or Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GR., Lv, BW., Yang, GJ. et al. Relationship Between Lamellar Structure and Elastic Modulus of Thermally Sprayed Thermal Barrier Coatings with Intra-splat Cracks. J Therm Spray Tech 24, 1355–1367 (2015). https://doi.org/10.1007/s11666-015-0292-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0292-5

Keywords

Navigation