Skip to main content
Log in

Tectonic evolution of convergent plate margins and its geological effects

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Oceanic lithosphere is generated at divergent plate boundaries and disappears at convergent plate boundaries. Seafloor spreading and plate subduction together constitute the physical coupling and mass conservation relationships to the movement of lithospheres on Earth. Subduction zones are a key site for the transfer of both matter and energy at converging plate boundaries, and their study has been the hot spot and frontier of Earth system science since the development of plate tectonics theory. As far as the dynamic regime and geothermal gradient of convergent plate margins are concerned, they have different properties in different stages of the subduction zone evolution. In general, the early low-angle subduction leads to compressional tectonism dominated by low geothermal gradients at the plate interface, and the late high-angle subduction results in extensional tectonism dominated by high geothermal gradients at the plate interface and its hanging wall. Active rifts are produced along suture zones through not only slab rollback or slab breakoff in the terminal stage of oceanic subduction but also foundering and thinning of the lithosphere in the post-subduction stage. Due to the differences and changes in the geometric and thermobaric structures of convergent plate margins, a series of changes in the type of metamorphism and magmatism can occur in active and fossil subduction zones. Dehydration and melting of the subducting oceanic crust are prominent at subarc depths, giving rise to fluids that dissolve different concentrations of fluid-mobile incompatible elements. The subduction zone fluids at subarc depths would chemically react with the overlying mantle wedge peridotite, generating metasomatites as the mantle sources of mafic magmas in oceanic and continental arcs. However, these metasomatites did not partially melt immediately upon the fluid metasomatism to trigger arc magmatism, and they did not melt until they were heated by asthenospheric convection due to rollback of the subducting slab. Therefore, recognition of the changes in the dynamic regime and geothermal gradient of subduction zones in different stages of plate convergence not only provides insights into geodynamic mechanisms of the tectonic evolution from subduction zones to orogenic belts, but also places constraints on the formation and evolution of different types of metamorphic and magmatic rocks within the advanced framework of plate tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bierlein F P, Groves D I, Cawood P A. 2009. Metallogeny of accretionary orogens—The connection between lithospheric processes and metal endowment. Ore Geol Rev, 36: 282–292

    Article  Google Scholar 

  • Bird P. 1979. Continental delamination and the Colorado Plateau. J Geophys Res, 84: 7561–7571

    Article  Google Scholar 

  • Bosch D, Jamais M, Boudier F, Nicolas A, Dautria J M, Agrinier P. 2004. Deep and high-temperature hydrothermal circulation in the Oman ophiolite—Petrological and isotopic evidence. J Petrol, 45: 1181–1208

    Article  Google Scholar 

  • Bradley D, Kusky T, Haeussler P, Goldfarb R, Miller M, Dumoulin J, Nelson S W, Karl S. 2003. Geologic signature of early Tertiary ridge subduction in Alaska. Geol Soc Am Spec Paper, 371: 19–49

    Google Scholar 

  • Brown M. 1998. Unpairing metamorphic belts: P-T paths and a tectonic model for the Ryoke Belt, southwest Japan. J Metamorph Geol, 16: 3–22

    Article  Google Scholar 

  • Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34: 961

    Article  Google Scholar 

  • Brown M. 2010. Paired metamorphic belts revisited. Gondwana Res, 18: 46–59

    Article  Google Scholar 

  • Brown M, Johnson T. 2019. Metamorphism and the evolution of subduction on Earth. Am Mineral, 104: 1065–1082

    Article  Google Scholar 

  • Brown M, Kirkland C L, Johnson T E. 2020. Evolution of geodynamics since the Archean: Significant change at the dawn of the Phanerozoic. Geology, 48: 488–492

    Article  Google Scholar 

  • Bucher K, Grapes R. 2011. Petrogenesis of Metamorphic Rocks. Berlin, Heidelberg: Springer-Verlag. 428

    Book  Google Scholar 

  • Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Philos Trans R Soc A, 376: 20170405

    Article  Google Scholar 

  • Cawood P A, Kröner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Lond Spec Publ, 318: 1–36

    Article  Google Scholar 

  • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet Sci Lett, 449: 118–126

    Article  Google Scholar 

  • Cawood P A. 2020. Metamorphic rocks and plate tectonics. Sci Bull, 65: 968–969

    Article  Google Scholar 

  • Chen H Y, Wu C. 2020. Metallogenesis and major challenges of porphyry copper systems above subduction zones. Sci China Earth Sci, 63: 899–918

    Article  Google Scholar 

  • Chen L, Zhao Z F. 2017. Origin of continental arc andesites: The composition of source rocks is the key. J Asian Earth Sci, 145: 217–232

    Article  Google Scholar 

  • Chen L, Zheng Y F, Xu Z, Zhao Z F. 2021. Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Geosci Front, 12: 101124

    Article  Google Scholar 

  • Chen Y X, Zhou K, Gao X Y. 2017. Partial melting of ultrahigh-pressure metamorphic rocks during continental collision: Evidence, time, mechanism, and effect. J Asian Earth Sci, 145: 177–191

    Article  Google Scholar 

  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences. Contrib Mineral Petrol, 86: 107–118

    Article  Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Article  Google Scholar 

  • Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173–196

    Article  Google Scholar 

  • Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024

    Article  Google Scholar 

  • Cipar J H, Garber J M, Kylander-Clark A R C, Smye A J. 2020. Active crustal differentiation beneath the Rio Grande Rift. Nat Geosci, 13: 758–763

    Article  Google Scholar 

  • Clark C, Fitzsimons I C W, Healy D, Harley S L. 2011. How does the continental crust get really hot? Elements, 7: 235–240

    Article  Google Scholar 

  • Clift P D, Vannucchi P, Morgan J P. 2009. Crustal redistribution, crustmantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci Rev, 97: 80–104

    Article  Google Scholar 

  • Condie K C. 2021. Revisiting the Mesoproterozoic. Gondwana Res, 100: 44–52

    Article  Google Scholar 

  • Cox A, Hart R B. 1986. Plate Tectonics: How It Works. Oxford: Blackwell Scientific Publications. 392

    Google Scholar 

  • Crameri F, Conrad C P, Montési L, Lithgow-Bertelloni C R. 2019. The dynamic life of an oceanic plate. Tectonophysics, 760: 107–135

    Article  Google Scholar 

  • Dallwitz W B. 1968. Co-existing sapphirine and quartz in granulite from Enderby Land, Antarctica. Nature, 219: 476–477

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • DePaolo D J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett, 53: 189–202

    Article  Google Scholar 

  • Dewey J F, Bird J M. 1970. Mountain belts and the new global tectonics. J Geophys Res, 75: 2625–2647

    Article  Google Scholar 

  • Dewey J F, Burke K. 1974. Hot spots and continental break-up: Implications for collisional orogeny. Geology, 2: 57–60

    Article  Google Scholar 

  • Dewey J F, Kiseeva E S, Pearce J A, Robb L J. 2021. Precambrian tectonic evolution of Earth: An outline. South African J Geol, 124: 141–162

    Article  Google Scholar 

  • Dewey J, Spall H. 1975. Pre-Mesozoic plate tectonics: How far back in Earth history can the Wilson Cycle be extended? Geology, 3: 422

    Article  Google Scholar 

  • Dewey J F. 1988. Extensional collapse of orogens. Tectonics, 7: 1123–1139

    Article  Google Scholar 

  • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bull, 123: 387–411

    Article  Google Scholar 

  • Ducea M, Saleeby J. 1998. A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev, 40: 78–93

    Article  Google Scholar 

  • Eiler J. 2003. Inside the subduction factory. Geophys Monogr, 138: 1–311

    Google Scholar 

  • Ernst W G, Maruyama S, Wallis S. 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc Natl Acad Sci, 94: 9532–9537

    Article  Google Scholar 

  • Frisch W, Meschede M, Blakey R C. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin, Heidelberg: Springer-Verlag. 212

    Book  Google Scholar 

  • Garfunkel Z, Anderson C A, Schubert G. 1986. Mantle circulation and the lateral migration of subducted slabs. J Geophys Res, 91: 7205–7223

    Article  Google Scholar 

  • Gill J B. 1981. Orogenic Andesites and Plate Tectonics. Heidelberg, Berlin: Springer-Verlag. 390

    Book  Google Scholar 

  • Groome W G, Thorkelson D J. 2009. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics, 464: 70–83

    Article  Google Scholar 

  • Grove T L, Till C B, Lev E, Chatterjee N, Médard E. 2009. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459: 694–697

    Article  Google Scholar 

  • Groves D I, Santosh M, Zhang L, Deng J, Yang L Q, Wang Q F. 2021. Subduction: The recycling engine room for global metallogeny. Ore Geol Rev, 134: 104130

    Article  Google Scholar 

  • Groves D I, Santosh M. 2021. Craton and thick lithosphere margins: The sites of giant mineral deposits and mineral provinces. Gondwana Res, 100: 195–222

    Article  Google Scholar 

  • Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophys Geosyst, 9: Q03001

    Article  Google Scholar 

  • Hamilton W B. 1969. Mesozoic California and the underflow of Pacific mantle. GSA Bull, 80: 2409–2430

    Article  Google Scholar 

  • Harley S L. 2021. UHT metamorphism. In: Alderton D, Elias S A, eds. Encyclopedia of Geology. 2nd ed. London: Academic Press. 522–552

    Chapter  Google Scholar 

  • Hawkesworth C J, Brown M. 2018. Earth dynamics and the development of plate tectonics. Philos Trans R Soc A, 376: 20180228

    Article  Google Scholar 

  • Hawkesworth C, Cawood P A, Dhuime B. 2019. Rates of generation and growth of the continental crust. Geosci Front, 10: 165–173

    Article  Google Scholar 

  • He Q, Zhang S B, Zheng Y F. 2018. Evidence for regional metamorphism in a continental rift during the Rodinia breakup. Precambrian Res, 314: 414–427

    Article  Google Scholar 

  • He Y S, Li S G, Hoefs J, Huang F, Liu S A, Hou Z H. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 75: 3815–3838

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88

    Article  Google Scholar 

  • Herzberg C, Rudnick R. 2012. Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos, 149: 4–15

    Article  Google Scholar 

  • Heuret A, Lallemand S. 2005. Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Inter, 149: 31–51

    Article  Google Scholar 

  • Hildebrand R S, Whalen J B, Bowring S A. 2018. Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust. Tectonophysics, 734–735: 69–88

    Article  Google Scholar 

  • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol, 98: 455–489

    Article  Google Scholar 

  • Holder R M, Viete D R, Brown M, Johnson T E. 2019. Metamorphism and the evolution of plate tectonics. Nature, 572: 378–381

    Article  Google Scholar 

  • Holt A F, Condit C B. 2021. Slab temperature evolution over the lifetime of a subduction zone. Geochem Geophys Geosyst, 22: e2020GC009476

    Article  Google Scholar 

  • Honza E. 1995. Spreading mode of backarc basins in the western Pacific. Tectonophysics, 251: 139–152

    Article  Google Scholar 

  • Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res, 86: 6115–6132

    Article  Google Scholar 

  • Hronsky J M A, Groves D I, Loucks R R, Begg G C. 2012. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner Depos, 47: 339–358

    Article  Google Scholar 

  • Hu J S, Gurnis M. 2020. Subduction duration and slab dip. Geochem Geophys Geosyst, 21: e08862

    Article  Google Scholar 

  • Hu X M, An W, Garzanti E, Liu Q. 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Sci China Earth Sci, 63: 2017–2028

    Article  Google Scholar 

  • Hyndman R D, Currie C A, Mazzotti S P. 2005. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15: 4–10

    Article  Google Scholar 

  • Ishiwatari A. 1994. Circum-Pacific Phanerozoic multiple ophiolite belts. In: Proceedings of the 29th International Geological Congress, Part D. 4: 7–28

  • Johnson T E, Brown M, Gardiner N J, Kirkland C L, Smithies R H. 2017. Earth’s first stable continents did not form by subduction. Nature, 543: 239–242

    Article  Google Scholar 

  • Kay R W, Kay S M. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177–189

    Article  Google Scholar 

  • Kelemen P B, Hanghoj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat Geochem, 4: 749–805

    Article  Google Scholar 

  • Kelemen P B, Rilling J L, Parmentier E M, Mehl L, Hacker B R. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophys Monogr, 138: 293–311

    Google Scholar 

  • Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front, 6: 311–356

    Article  Google Scholar 

  • Kusky T M, Windley B F, Polat A. 2018. Geological evidence for the operation of plate tectonics throughout the Archean: Records from Archean paleo-plate boundaries. J Earth Sci, 29: 1291–1303

    Article  Google Scholar 

  • Kusky T. 2020. Plate tectonics in relation to mantle temperatures and metamorphic properties. Sci China Earth Sci, 63: 634–642

    Article  Google Scholar 

  • Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst, 6: Q09006

    Article  Google Scholar 

  • Le Pichon X, Francheteau J, Bonnin J. 1973. Plate Tectonics. Amsterdam: Elsevier. 300

    Google Scholar 

  • Li J L. 2020. Blueschist: A window into high-pressure/low-temperature metamorphism and subduction zone dynamics. Sci China Earth Sci, 63: 1852–1867

    Article  Google Scholar 

  • Li S Z, Suo Y H, Zhu J, Dai L, Zhang R, Liu X, Qiao L, Liu J, Zhang X. 2020. Advance and frontier of the research on trench system (in Chinese). Sci Sin-Terr, 50: 1874–1892

    Google Scholar 

  • Li W C, Ni H W. 2020. Dehydration at subduction zones and the geochemistry of slab fluids. Sci China Earth Sci, 63: 1925–1937

    Article  Google Scholar 

  • Li Z H. 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Sci China Earth Sci, 57: 47–69

    Article  Google Scholar 

  • Li Z H, Liu M Q, Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Sci China Earth Sci, 58: 1251–1268

    Article  Google Scholar 

  • Li Z X, Zhang S B, Zheng Y F, Hanchar J M, Gao P, Lu Y M, Su K, Sun F Y, Liang T. 2021. Crustal thickening and continental formation in the Neoarchean: Geochemical records by granitoids from the Taihua Complex in the North China Craton. Precambrian Res, 367: 106446

    Article  Google Scholar 

  • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahighpressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199–231

    Article  Google Scholar 

  • Liu Y C, Zhang C W. 2020. Exhumation of deeply subducted crust: Review and outlook. Sci China Earth Sci, 63: 1904–1924

    Article  Google Scholar 

  • Manning C E, MacLeod C J, Weston P E. 2000. Lower-crustal cracking front at fast-spreading ridges: Evidence from the East Pacific Rise and the Oman ophiolite. J Geol Soc, 349: 261–272

    Google Scholar 

  • Manning C E, Weston P E, Mahon K I. 1996. Rapid high-temperature metamorphism of East Pacific Rise gabbros from Hess Deep. Earth Planet Sci Lett, 144: 123–132

    Article  Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J, Le Pennec J L. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199: 1–13

    Article  Google Scholar 

  • Metcalf R V, Shervais J W. 2008. Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? Geol Soc Am Spec Paper, 438: 191–222

    Google Scholar 

  • Miyashiro A. 1961. Evolution of metamorphic belts. J Petrol, 2: 277–311

    Article  Google Scholar 

  • Miyashiro A. 1973a. Metamorphism and Metamorphic Belts. London: Allen and Unwin. 492

    Book  Google Scholar 

  • Miyashiro A. 1973b. Paired and unpaired metamorphic belts. Tectonophysics, 17: 241–254

    Article  Google Scholar 

  • Moreira H, Storey C, Fowler M, Seixas L, Dunlop J. 2020. Petrogenetic processes at the tipping point of plate tectonics: Hf-O isotope ternary modelling of Earth’s last TTG to sanukitoid transition. Earth Planet Sci Lett, 551: 116558

    Article  Google Scholar 

  • Moyen J F, Janoušek V, Laurent O, Bachmann O, Jacob J B, Farina F, Fiannacca P, Villaros A. 2021. Crustal melting vs. fractionation of basaltic magmas: Part 1, Granites and paradigms. Lithos, 402–403: 106291

    Article  Google Scholar 

  • Moyen J F. 2020. Archean granitoids: Classification, petrology, geochemistry and origin. Geol Soc Lond Spec Publ, 489: 15–49

    Article  Google Scholar 

  • Murphy J B, Nance R D. 2013. Speculations on the mechanisms for the formation and breakup of supercontinents. Geosci Front, 4: 185–194

    Article  Google Scholar 

  • Nakakuki T, Mura E. 2013. Dynamics of slab rollback and induced backarc basin formation. Earth Planet Sci Lett, 361: 287–297

    Article  Google Scholar 

  • Nicolas A, Boudier F. 2003. Where ophiolites come from and what they tell us. Geol Soc Am Spec Paper, 373: 137–151

    Google Scholar 

  • Nicolas A, Mainprice D, Boudier F. 2003. High-temperature seawater circulation throughout crust of oceanic ridges: A model derived from the Oman ophiolites. J Geophys Res, 108: 2371

    Article  Google Scholar 

  • Nielsen S G, Marschall H R. 2017. Geochemical evidence for mélange melting in global arcs. Sci Adv, 3: e1602402

    Article  Google Scholar 

  • Ning W B, Kusky M T, Wang L, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. Proc Natl Acad Sci USA, 119: e2117529119

    Article  Google Scholar 

  • Oxburgh E R, Turcotte D L. 1971. Origin of paired metamorphic belts and crustal dilation in island arc regions. J Geophys Res, 76: 1315–1327

    Article  Google Scholar 

  • Palin R M, White R W. 2016. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nat Geosci, 9: 60–64

    Article  Google Scholar 

  • Pastor-Galán D, Nance R D, Murphy J B, Spencer C J. 2019. Supercontinents: Myths, mysteries, and milestones. Geol Soc London Spec Publ, 470: 39–64

    Article  Google Scholar 

  • Peacock S M. 2003. Thermal structure and metamorphic evolution of subducting slabs. Geophys Monogr, 138: 7–22

    Google Scholar 

  • Peacock S M. 2020. Advances in the thermal and petrologic modeling of subduction zones. Geosphere, 16: 936–952

    Article  Google Scholar 

  • Pearce J A, Stern R J. 2006. The origin of back-arc basin magmas: Trace element and isotope perspectives. Geophys Monogr, 166: 63–86

    Google Scholar 

  • Pitcher W S. 1979. The nature, ascent and emplacement of granitic magmas. J Geol Soc, 136: 627–662

    Article  Google Scholar 

  • Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37: 247–250

    Article  Google Scholar 

  • Richards J P. 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol Rev, 70: 323–345

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187–207

    Article  Google Scholar 

  • Roberts N M W. 2013. The boring billion?—Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci Front, 4: 681–691

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2014. Composition of the continental crust. Treat Geochem, 4: 1–51

    Google Scholar 

  • Sawkins F J. 1990. Metal Deposits in Relation to Plate Tectonics. 2nd ed. Berlin, Heidelberg: Springer-Verlag. 461

    Book  Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treat Geochem, 4: 669–701

    Article  Google Scholar 

  • Şengör A M C. 2013. The Pyrenean Hercynian Keirogen and the Cantabrian Orocline as genetically coupled structures. J Geodyn, 65: 3–21

    Article  Google Scholar 

  • Sisson V B, Pavlis T L, Roeske S M, Thorkelson D J. 2003. Introduction: An overview of ridge-trench interactions in modern and ancient settings. Geol Soc Am Spec Paper, 371: 1–18

    Google Scholar 

  • Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644

    Article  Google Scholar 

  • Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742–746

    Article  Google Scholar 

  • Spencer C J, Mitchell R N, Brown M. 2021. Enigmatic mid-Proterozoic orogens: Hot, thin, and low. Geophys Res Lett, 48: e2021GL093312

    Article  Google Scholar 

  • Stern R J. 2020. The Mesoproterozoic single-lid tectonic episode: Prelude to modern plate tectonics. GSA Today, 30: 4–10

    Article  Google Scholar 

  • Stern C R. 2011. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res, 20: 284–308

    Article  Google Scholar 

  • Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geosci Front, 9: 103–119

    Article  Google Scholar 

  • Stern R J, Gerya T. 2018. Subduction initiation in nature and models: A review. Tectonophysics, 746: 173–198

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Article  Google Scholar 

  • Stern R J. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  • Stern R J. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33: 557

    Article  Google Scholar 

  • Stern R J. 2018. The evolution of plate tectonics. Philos Trans R Soc A, 376: 20170406

    Article  Google Scholar 

  • St-Onge M R, King J E. 1987. Evolution of regional metamorphism during back-arc stretching and subsequent crustal shortening in the 1.9 Ga Wopmay Orogen, Canada. Philos Trans R Soc A, 321: 199–218

    Google Scholar 

  • Stüwe K. 2007. Geodynamics of the Lithosphere: Quantitative Description of Geological Problems. 2nd ed. Berlin, Heidelberg, Dordrecht: Springer-Verlag. 493

    Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Article  Google Scholar 

  • Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351: 372–375

    Article  Google Scholar 

  • Tatsumi Y, Kimura N. 1991. Backarc extension versus continental breakup: Petrological aspects for active rifting. Tectonophysics, 197: 127–137

    Article  Google Scholar 

  • Taylor B, Martinez F. 2003. Back-arc basin basalt systematics. Earth Planet Sci Lett, 210: 481–497

    Article  Google Scholar 

  • Thorkelson D J. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255: 47–63

    Article  Google Scholar 

  • Thorkelson D J. 2021. Ridge subduction and slab windows. In: Alderton D, Elias S A, eds. Encyclopedia of Geology. 2nd ed. London: Academic Press. 957–967

    Chapter  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Google Scholar 

  • van Keken P E, Wada I, Abers G A, Hacker B R, Wang K. 2018. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem Geophys Geosyst, 19: 2934–2961

    Article  Google Scholar 

  • Wakabayashi J, Dilek Y. 2000. Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of model of forearc ophiolite genesis. Geol Soc Am Spec Paper, 349: 53–64

    Google Scholar 

  • Wang J T, Xiong X L, Chen Y X, Huang F. 2020. Redox processes in subduction zones: Progress and prospect. Sci China Earth Sci, 63: 1952–1968

    Article  Google Scholar 

  • Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nat Commun, 5: 5604

    Article  Google Scholar 

  • Wang Q, Hao L L, Zhang X, Zhou J, Wang J, Li Q, Ma L, Zhang L, Qi Y, Tang G, Dan W, Fan J. 2020a. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. Sci China Earth Sci, 63: 1992–2016

    Article  Google Scholar 

  • Wang Q, Tang G, Hao L, Wyman D, Ma L, Dan W, Zhang X, Liu J, Huang T, Xu C. 2020b. Ridge subduction, magmatism, and metallogenesis. Sci China Earth Sci, 63: 1499–1518

    Article  Google Scholar 

  • Wang Q, Wyman A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636

    Article  Google Scholar 

  • Wang R, Zhu D C, Wang Q, Hou Z, Yang Z, Zhao Z, Mo X. 2020. Porphyry mineralization in the Tethyan orogen. Sci China Earth Sci, 63: 2042–2067

    Article  Google Scholar 

  • Wang X L, Liu F, Li J, Wang D. 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics. Sci China Earth Sci, 63: 2068–2086

    Article  Google Scholar 

  • Wang X L, Tang M, Moyen J-F, Wang D, Kröner A, Hawkesworth C, Xia X P, Xie H Q, Anhaeusser C, Hofmann A, Li J Y, Li L S. 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. Natl Sci Rev, 9: nwab136

    Article  Google Scholar 

  • Wei C J, Zheng Y F. 2020. Metamorphism, fluid behavior and magmatism in oceanic subduction zones. Sci China Earth Sci, 63: 52–77

    Article  Google Scholar 

  • Wickham S M, Oxburgh E R. 1985. Continental rifts as a setting for regional metamorphism. Nature, 318: 330–333

    Article  Google Scholar 

  • Wilson J T. 1966. Did the Atlantic close and then re-open? Nature, 211: 676–681

    Article  Google Scholar 

  • Wilson J T. 1968. Static or mobile earth: The current scientific revolution. Proc Am Philos Soc, 112: 309–320

    Google Scholar 

  • Wilson R W, Houseman G A, Buiter S J H, McCaffrey K J W, Doré A. 2019. Fifty years of the Wilson Cycle concept in plate tectonics: An overview. Geol Soc Lond Spec Publ, 470: 1–17

    Article  Google Scholar 

  • Windley B F, Kusky T M, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Res, 352: 105980

    Article  Google Scholar 

  • Windley B F, Xiao W J. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Res, 61: 73–87

    Article  Google Scholar 

  • Wu F Y, Wang J G, Liu C Z, Liu T, Zhang C, Ji W Q. 2019. Intra-oceanic arc: Its formation and evolution (in Chinese with English abstract). Acta Petrol Sin, 35: 1–15

    Article  Google Scholar 

  • Xiong X L, Liu X, Li L, Wang J, Chen W, Ruan M, Xu T, Sun Z, Huang F, Li J, Zhang L. 2020. The partitioning behavior of trace elements in subduction zones: Advances and prospects. Sci China Earth Sci, 63: 1938–1951

    Article  Google Scholar 

  • Xu S T, Okay A I, Ji S Y, Sengor A M C, Su W, Liu Y C, Jiang L L. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82

    Article  Google Scholar 

  • Xu W L, Zhao Z F, Dai L Q. 2020. Post-collisional mafic magmatism: Record of lithospheric mantle evolution in continental orogenic belt. Sci China Earth Sci, 63: 2029–2041

    Article  Google Scholar 

  • Xu Y G, Wang Q, Tang G, Wang J, Li H, Zhou J, Li Q, Qi Y, Liu P, Ma L, Fan J. 2020. The origin of arc basalts: New advances and remaining questions. Sci China Earth Sci, 63: 1969–1991

    Article  Google Scholar 

  • Yu C Y, Yang T, Zhang J, Zhao G C, Cawood P A, Yin C Q, Qian J H, Gao P, Zhao C. 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton. Earth Planet Sci Lett, 586: 117529

    Article  Google Scholar 

  • Zhang H R, Hou Z Q. 2018. Metallogenesis within continental collision zones: Comparisons of modern collisional orogens. Sci China Earth Sci, 61: 1737–1760

    Article  Google Scholar 

  • Zhang J X. 2020. The study of subduction channels: Progress, controversies, and challenges. Sci China Earth Sci, 63: 1831–1851

    Article  Google Scholar 

  • Zhang L F, Wang Y. 2020. The exhumation of high- and ultrahigh-pressure metamorphic terranes in subduction zone: Questions and discussions. Sci China Earth Sci, 63: 1884–1903

    Article  Google Scholar 

  • Zhao M S, Chen Y X, Zheng Y F. 2021. Geochemical evidence for forearc metasomatism of peridotite in the Xigaze ophiolite during subduction initiation in Neo-Tethyan Ocean, south to Tibet. Lithos, 380–381: 105896

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2015. Two types of the crust-mantle interaction in continental subduction zones. Sci China Earth Sci, 58: 1269–1283

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3: 3413

    Article  Google Scholar 

  • Zhao Z F, Liu Z B, Chen Q. 2017b. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. J Asian Earth Sci, 145: 260–277

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Chen Y X, Sun G C. 2017a. Partial melting of subducted continental crust: Geochemical evidence from synexhumation granite in the Sulu orogen. GSA Bull, https://doi.org/10.1130/B31675.1

  • Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F. 2018. Fifty years of plate tectonics. Natl Sci Rev, 5: 119–119

    Article  Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Article  Google Scholar 

  • Zheng Y F. 2021a. Plate tectonics. In: Alderton D, Elias S A, eds. Encyclopedia of Geology. 2nd ed. London: Academic Press. 744–758

    Chapter  Google Scholar 

  • Zheng Y F. 2021b. Convergent plate boundaries and accretionary wedges. In: Alderton D, Elias S A, eds. Encyclopedia of Geology. 2nd ed. London: Academic Press. 770–787

    Chapter  Google Scholar 

  • Zheng Y F. 2021c. Exhumation of ultrahigh-pressure metamorphic terranes. In: Alderton D, Elias S A, eds. Encyclopedia of Geology. 2nd ed. London: Academic Press. 868–878

    Chapter  Google Scholar 

  • Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73

    Article  Google Scholar 

  • Zheng Y F, Chen R X. 2021. Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics. Geosphere, 17: 1647–1685

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Article  Google Scholar 

  • Zheng Y F, Chen Y X. 2019. Crust-mantle interaction in continental subduction zones (in Chinese with English abstract). Earth Sci, 44: 3961–3983

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402–403: 106232

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planet Space, 66: 93

    Article  Google Scholar 

  • Zheng Y F, Miller C F, Xu X, Moyen J F, Wang X L. 2021. Introduction to the origin of granites and related rocks. Lithos, 402–403: 106380

    Article  Google Scholar 

  • Zheng Y F, Xu Z, Zhao Z F, Dai L Q. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Article  Google Scholar 

  • Zheng Y F, Zhao G C. 2020. Two styles of plate tectonics in Earth’s history. Sci Bull, 65: 329–334

    Article  Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Article  Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Article  Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geodynamics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185

    Article  Google Scholar 

  • Zheng Y F, Zhao Z F, Chen R X. 2019a. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Compositional inheritance and metamorphic modification. Geol Soc Lond Spec Publ, 474: 89–132

    Article  Google Scholar 

  • Zheng Y F, Mao J W, Chen Y J, Sun W D, Ni P, Yang X Y. 2019b. Hydrothermal ore deposits in collisional orogens. Sci Bull, 64: 205–212

    Article  Google Scholar 

  • Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Article  Google Scholar 

  • Zheng Y F, Zhou J B, Wu Y B, Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int Geol Rev, 47: 851–871

    Article  Google Scholar 

  • Zhou J B. 2020. Accretionary complex: Geological records from oceanic subduction to continental deep subduction. Sci China Earth Sci, 63: 1868–1883

    Article  Google Scholar 

  • Zhou K, Chen Y X, Ma H Z, Zheng Y F, Xia X P. 2020. Geochemistry of high-pressure to ultrahigh-pressure granitic melts produced by decompressional melting of deeply subducted continental crust in the Sulu orogen, east-central China. Geochim Cosmochim Acta, 288: 214–247

    Article  Google Scholar 

  • Zhu R X, Sun W D. 2021. The big mantle wedge and decratonic gold deposits. Sci China Earth Sci, 64: 1451–1462

    Article  Google Scholar 

  • Zwart H J. 1967. The duality of orogenic belts. Geol Mijnbouw, 46: 283–309

    Google Scholar 

  • Zwart H J. 1969. Metamorphic facies series in the European orogenic belts and their bearing on the causes of orogeny. Geol Assoc Can Spec Paper, 5: 7–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chen, Y., Chen, R. et al. Tectonic evolution of convergent plate margins and its geological effects. Sci. China Earth Sci. 65, 1247–1276 (2022). https://doi.org/10.1007/s11430-022-9947-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-9947-6

Keywords

Navigation