Skip to main content

Advertisement

Log in

A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods

  • Invited Paper
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Accretionary orogens are the sites of long-lived convergent margin tectonics, both compressional and extensional. They are also the hosts to the majority of the world’s important gold deposits. A very diverse range of deposit types occurs within accretionary orogens, commonly in close proximity in space and time to each other. These include porphyry and associated high-sulphidation Au–Cu–Ag deposits, classic low-sulphidation Au–Ag deposits, low-sulphidation Au deposits centred on alkalic intrusive complexes, Carlin-type Au deposits, Au-rich volcanic-hosted massive sulphide deposits, orogenic Au deposits, intrusion-related Au deposits and iron oxide Cu–Au deposits. Empirical patterns of spatial distribution of these deposits suggest there must be fundamental generic controls on gold metallogeny. Various lines of evidence lead to the proposal that the underlying key generic factor controlling accretionary orogen gold metallogeny is regional-scale, long-term, pre- and syn-subduction heterogeneous fertilisation of the lithospheric mantle that becomes a source of mineralisation-associated arc magma or hydrothermal fluid components. This process provides a gold-enriched reservoir that can be accessed later in a diverse range of tectonomagmatic settings. Based on this concept, a unified model is proposed in which the formation of a major gold deposit of any type requires the conjunction in time and space of three essential factors: a fertile upper-mantle source region, a favourable transient remobilisation event, and favourable lithospheric-scale plumbing structure. This framework provides the basis for a practical regional-scale targeting methodology that is applicable to data-poor regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arculus RJ, Pearce JA, Murton BJ, van der Laan SR (1992) Igneous stratigraphy and major element geochemistry of Holes 786A and 786B. Proc Ocean Drill Program Sci Results 125:143–169

    Google Scholar 

  • Arima M, Kerrich R (1988) Jurassic kimberlites from Picton and Varty Lake, geochemical and stable isotopic characteristics. Contrib Mineral Petrol 99:385–391

    Article  Google Scholar 

  • Ashley PM, Cook NDJ, Hill RL, Kent AJR (1994) Shoshonitic lamprophyre dykes and their relation to mesothermal Au–Sb veins at Hillgrove, New South Wales, Australia. Lithos 32:249–272

    Article  Google Scholar 

  • Bau M, Knittel U (1993) Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt Arayat, Philippines. Chem Geol 105:233–251

    Article  Google Scholar 

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550

    Article  Google Scholar 

  • Begg GC, Loucks RR, Gray DR, Foster DA, Kent AJ, Cooke DR (2004) Gold, magmas, and tectonics: A dynamic link. In Muhling J et al. (eds) SEG 2004: Predictive Mineral Discovery Under Cover; Extended Abstracts. Centre for Global Metallogeny, The University of Western Australia, Publ 33:268–270

  • Begg G, Loucks R, Gray D, Foster D, Kent A, Cooke D (2007) Gold and tectonics: A dynamic link: Ores and Orogenesis, Program with Abstracts, Arizona Geol Soc Ores and Orogenesis Symposium, Tucson, Arizona, September 24–30. pp 90–91.

  • Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand S, O’Neil CJ, Hronsky JMA, Poudjom-Djomani Y, Deen T, Bowden P (2009) The lithospheric architecture of Africa: seismic tomography, mantle petrology and tectonic evolution. Geosphere 5:23–50. doi:10.1130/GES00179.1

    Article  Google Scholar 

  • Begg GC, Hronsky JMA, Arndt NT, Griffin WL, O’Reilly SY, Hayward N (2010) Lithospheric, cratonic and geodynamic setting of Ni-Cu-PGE sulfide deposits. Econ Geol 105:1057–1070

    Article  Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Article  Google Scholar 

  • Bennett VC, DePaolo DJ (1987) Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geol Soc Am Bull 99:674–685

    Article  Google Scholar 

  • Bierlein FP, Groves DI, Cawood PA (2009) Metallogeny of accretionary orogens—the connection between lithospheric processes and metal endowment. Ore Geol Rev 36:282–292

    Article  Google Scholar 

  • Billingsley P, Locke A (1935) Tectonic position of ore districts in the Rocky Mountain region. Am Inst Mining Metall Engineers Trans 115:59–68

    Google Scholar 

  • Billingsley P, Locke A (1941) Structure of ore districts in the continental framework. Am Inst Mining Metall Engineers Trans 144:9–64

    Google Scholar 

  • Binns RA, Scott SD (1993) Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ Geol 88:2226–2236

    Article  Google Scholar 

  • Blewett RS, Czarnota K (2007) Tectonostratigraphic architecture and uplift history of the eastern Yilgarn craton. Geoscience Australia Record 2007/15, 114p

  • Burke K, Ashwal LD, Webb SJ (2003) New way to map old sutures using deformed alkaline rocks and carbonatites. Geology 31:391–394

    Article  Google Scholar 

  • Carman GD (2003) Geology, mineralization, and hydrothermal evolution of the Ladolam gold deposit, Lihir Island, Papua New Guinea. Soc Econ Geol Spec Publ 10:243–284

    Google Scholar 

  • Cassidy KF (2006) Geological evolution of the eastern Yilgarn craton (EYC) and terrane, domain and fault system nomenclature. Geoscience Australia Record 2006/5: 38p

  • Cawood PA, Kroener A, Collins WJ, Kusky TM, Mooney WD, Windley BF(2009) Accretionary orogens through Earth history. In Cawood PA, Kroner A (eds) Earth Accretionary Systems in Space and Time. Geol Soc London, Spec Pub 318: 1–36

  • Cayley RA, Korsch RJ, Moore DH, Costelloe RD, Nakamura A, Willman CE, Rawling TJ, Morand VJ, Skladzien PB, O’Shea PJ (2011) Crustal architecture of central Victoria: results from the 2006 deep crustal reflection seismic survey. Austr J Earth Sci 58:113–156

    Article  Google Scholar 

  • Cline JS, Hofstra AH, Muntean JL, Tosdal RM, Hickey K (2005) Carlin-type gold deposits in Nevada:critical geological characteristics and viable models. Econ Geol 100th Anniv Vol:451–484

  • Clowes RM, Zelt CA, Amor JA, Ellis RM (1995) Lithospheric structure in the southern Canadian Cordillerra from a network of seismic refraction lines. Can J Earth Sci 32:1485–1513

    Article  Google Scholar 

  • Coney PJ, Jones DL, Monger JWH (1980) Cordilleran suspect terranes. Nature 288:329–333

    Article  Google Scholar 

  • Cook FA (1995) Lithospheric processes and products in the southern Canadian Cordillera: a LITHOPROBE perspective. Can J Earth Sci 32:1803–1824

    Article  Google Scholar 

  • Cook FA, Clowes RM, Snyder DB, Van der Velden AJ, Hall K, Erdmer P, Evenchik CA (2004) Precambrian crust and lithosphere beneath the northern Canadian cordillera discovered by LITHOPROBE seismic reflection profiling. Tectonics 23:TC2010. doi:10.1029/2002TC001412

    Article  Google Scholar 

  • Crafford AEJ, Grauch VJS (2002) Geologic and geophysical evidence for the influence of deep crustal structures on Paleozoic tectonics and the alignment of world-class gold deposits, north-central Nevada, USA. Ore Geol Rev 21:157–184

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Article  Google Scholar 

  • Faure S, Godey S, Fallara F, Trepanier S (2011) Seismic architecture of the Archean North American mantle and its relationship to diamondiferous kimberlites fields. Econ Geol 106:223–240

    Article  Google Scholar 

  • Finzel ES, Trop JM, Ridgway KD, Enkelmann E (2011) Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet Sci Lett 303:348–366

    Article  Google Scholar 

  • Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280:365–383

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005). Volcanogenic massive sulfide deposits. Econ Geol 100th Anniv vol: 523–560

  • Franz L, Romer RL (2010) Different styles of metasomatic veining in ultramafic xenoliths from the TUBAF seamount (Bismarck Microplate, Papua New Guinea). Lithos 114:30–53

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

    Article  Google Scholar 

  • Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR, Gosselin P(2005) Distribution, character, and genesis of gold deposits in metamorphic terranes: Econ Geol 100th Anniv Vol: 407–450

  • Goryachev N (2008) Gold deposits of the Magadan Region, Northeastern Russia: yesterday, today and tomorrow: SEG Newsletter 74: July 2008

  • Grainger CJ, Groves DI, Tallarico FHB, Fletcher IR (2008) Metallogenesis of the Carajas Mineral Province, Southern Amazon Craton, Brazil: varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol Rev 33:451–489

    Article  Google Scholar 

  • Grauch VJS, Rodriguez BD, Wooden JL (2003) Geophysical and isotopic constraints on crustal structure related to mineral trends in north-central Nevada and implications for tectonic history. Econ Geol 98:269–286

    Google Scholar 

  • Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • Griffin WL, Begg GC, Dunn D, O’Reilly SY, Natapov LM, Karlstrom K (2011) Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion. Geol Soc Am Bull. doi:10.1130/B30253.1

  • Groves DI (1993) The crustal continuum model for late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Miner Deposita 28:366–374

    Article  Google Scholar 

  • Groves DI (2009) Predictive vs forensic mineral deposit geology: viewing giant deposits at appropriate scale. In: Williams PJ (ed) Proceedings of SGA 2009: smart science for exploration and mining, EGRU, Townsville, Australia, 2–4

  • Groves DI, Vielreicher NM (2001) The Phalabowra (Palabora) carbonatite-hosted magnetite–copper sulphide deposit, South Africa: an end-member of the iron–oxide copper–gold–rare earth element deposit group? Miner Deposita 36:189–194

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research and exploration significance. Econ Geol 98:1–30

    Google Scholar 

  • Groves DI, Condie KC, Goldfarb RJ, Hronsky JMA, Vielreicher RM (2005a) Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Econ Geol 100:203–224

    Google Scholar 

  • Groves DI, Mair JL, Vielreicher RM, Goldfarb RJ, Condie KC (2005b) Lithospheric settings of Carlin-type deposits: an important clue to their genetic associations and deposit associates. Geol Soc Nevada Symposium 2005 Proceedings: 1–11

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron-oxide copper-gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Article  Google Scholar 

  • Halley SW, Roberts RH (1997) Henty: a shallow-water gold-rich volcanogenic massive sulfide deposit in Western Tasmania. Econ Geol 100:203–224

    Google Scholar 

  • Hand M, Reid A, Jagodzinski L (2007) Tectonic framework and evolution of the Gawler craton, South Australia. Econ Geol 92:438–447

    Google Scholar 

  • Hannington M, Jamieson J, Monecke T, Petersen S (2011) Modern sea-floor massive sulfides and base metal resources: towards an estimate of global sea-floor massive sulfide potential. In Goldfarb RJ, Marsh EE, Monecke T (eds) Soc Econ Geol Spec Publ 15(2): 317–338

  • Hill KC, Kendrick RD, Crowhurst PV, Gow PA (2002) Copper-gold mineralisation in New Guinea: tectonics, lineaments, thermochronology and structure. Aust J Earth Sci 49:737–752

    Article  Google Scholar 

  • Hoffman AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hronsky JMA, Groves DI (2008) Science of targeting: definition, strategies, targeting and performance measurement. Aust J Earth Sci 55:3–12

    Article  Google Scholar 

  • Huang Z, Liu C, Yand H, Xu C, Han R, Xiao Y, Zhang B, Li W (2002) The geochemistry of lamprophyres in the Laowangzhai gold deposits, Yunnan Province, China: implications for characteristics of its source region. Geochem J 36:91–112

    Article  Google Scholar 

  • Humphreys E (2009) Relation of flat subduction to magmatism and deformation in the western United States. In Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Amer Memoir 204: 85–98

  • Jensen EP, Barton MD (2000) Gold deposits related to alkaline magmatism. Rev Econ Geol 13:279–314

    Google Scholar 

  • Johnson JP, McCulloch MT (1995) Sources of mineralising fluids for the Olympic Dam deposit (South Australia): Sm-Nd isotopic constraints. Chem Geol 121:177–199

    Article  Google Scholar 

  • Johnson RW, Jaques AL, Langmuir CH, Perfit MR, Staudigel H, Dunkley PN, Chappell BW, Taylor SR (1987) Ridge subduction and fore-arc volcanism: petrology and geochemistry of rocks dredged from the western Solomon Arc and Woodlark Basin. In: Taylor B, Exon NF (eds) Marine Geology, Geophysics and Geochemistry of the Woodlark Basin–Solomon Islands, Circum-Paciific Council for Energy and Mineral Resources, Earth Science Series 7. Circum-Pacific Council for Energy and Mineral Resources, Houston Texas, pp 155–226

    Google Scholar 

  • Kay SM, Mpodozis C (2001) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today 11:4–9

    Article  Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88

    Article  Google Scholar 

  • Kelley KD, Ludington S (2002) Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Miner Deposita 37:38–60

    Google Scholar 

  • Kusznir NJ, Garner GD (2007) Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. In: Karner GD, Manatschal G, Pinheiro LM (eds). Imaging, mapping and modelling continental lithosphere extension and breakup. Geol Soc London Spec Publ 282: 389–412

  • Lang JR, Baker T, Hart CJR, Mortensen JK (2000) An exploration model for intrusion-related gold systems. SEG Newsletter 40: January 2000

  • Lorand JP, Keays RR, Bodinier J (1993) Copper and noble metal enrichments across the lithosphere-asthenosphere boundary of mantle diapirs; evidence from the Lanzo lherzolite massif. J Petrol 34:1111–1140

    Google Scholar 

  • Lorand JP, Pattou L, Gros M (1999) Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites. J Petrol 40:957–981

    Article  Google Scholar 

  • Loucks RR, Ballard JR (2003) Report 2C: Petrochemical characteristics, petrogenesis and tectonic habits of gold-ore-forming arc magmas. Unpublished report for industry-sponsored research project: Predictive Guides to Copper and Gold Mineralization at Circum-Pacific Convergent Plate Margins. 69p

  • Lu C-Y, Angelier J, Chu H-T, Lee J-C (1995) Contractional, transcurrent, rotational and extensional tectonics: examples from Northern Taiwan. Tectonophysics 246:129–146

    Article  Google Scholar 

  • Mair JL, Farmer GL, Groves DI, Hart CJR, Goldfarb RJ (2011) Petrogenesis of mid-Cretaceous post-collisional magmatism at Scheelite Dome, Yukon, Canada: evidence for a lithospheric mantle source for intrusion-related gold systems. Econ Geol 106:451–480

    Article  Google Scholar 

  • Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ (2002) Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Miner Deposita 37:14–37

    Article  Google Scholar 

  • McInnes BIA, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore metal recycling in subduction zones. Science 286:512–516

    Article  Google Scholar 

  • McInnes BIA, Gregoire M, Binns RA, Herzig PM, Hannington MD (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett 188:169–183

    Article  Google Scholar 

  • Miller JM, Wilson CJL, Dugdale LJ (2006) Stawell gold deposit: a key to unravelling the Cambrian to Early Devonian structural evolution of the western Victorian goldfields. Aust J Earth Sci 53:677–695

    Article  Google Scholar 

  • Miller J, Nugus M, Henson P (2007) Importance of structural targeting: case studies from the Eastern Goldfields Superterrane. In Bierlein FP & Knox-Robinson CM (eds) Proceedings of the Kalgoorlie’07 Conference, Geoscience Australia Record 2007/14: 209–213

  • Monger JWH, Gabrielse H, Souther JA (1972) Evolution of the Canadian Cordillera: a plate tectonic model. Am J Sci 272:577–602

    Article  Google Scholar 

  • Morgan JW (1986) Ultramafic xenoliths: clues to Earth’s late accretionary history. J Geophys Res 91(B12):12,375–12,387

    Article  Google Scholar 

  • Muller D (2002) Gold-copper mineralization in alkaline rocks. Miner Deposita 37:1–3

    Google Scholar 

  • Muller D, Groves DI (1995) Potassic igneous rocks and associated gold-copper mineralization: lecture notes in Earth Sciences 56. Springer, Berlin

    Google Scholar 

  • Muntean JL, Cline JS, Simon AC, Longo AA (2011) Magmatic hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat Geosci 4:122–127

    Article  Google Scholar 

  • Nokleberg WJ, Bundtzen TK, Eremin RA, Ratkin VV, Dawson KM, Shpikerman VI, Goryachev NA, Byalobzhesky SG, Frolov YF, Khanchuk AI, Koch RD, Monger JWH, Pozdeev AI, Rozenblum IS, Rodionov SM, Parfenov LM, Scotese CR, Sidorov AA (2005) Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. US Geol Surv Prof Pap 1697:429

    Google Scholar 

  • O’Driscoll EST (1986) Observations of the lineament–ore relation. Phil Trans Roy Soc Lond A317:195–218

    Google Scholar 

  • Padilla-Garza RA, Titley SR, Pimental FB (2001) Geology of the Escondida porphyry copper deposit, Antofagasta Region, Chile. Econ Geol 96:307–324

    Google Scholar 

  • Pearce JA, Thirwall MF, Ingram G, Murton BJ, Arculus RJ, van der Laan SR (1992) Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) fore-arc, Leg 125. Proc Ocean Drill Program Sci Results 125:237–261

    Google Scholar 

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Article  Google Scholar 

  • Pettke T, Oberli F, Heinrich CA (2010) The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet Sci Lett 296:267–277

    Article  Google Scholar 

  • Pilet S, Baker MB, Müntener O, Stolper EM (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol 52:1415–1442

    Article  Google Scholar 

  • Presnell RD (1992) Local and regional geology of the Oquirrh Mountains. Utah Geol Surv Misc Publ 92–3:293–306

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogenic belts: the Eastern Alps. Geology 17:404–407

    Article  Google Scholar 

  • Ressel MW, Henry CD (2006) Igneous geology of the Carlin Trend, Nevada: development of the Eocene plutonic complex and significance for Carlin-type gold deposits. Econ Geol 101:347–383

    Article  Google Scholar 

  • Reston TJ (2007) The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin: In: Karner GD, Manatschal G, Pinheiro LM (eds). Imaging, mapping and modelling continental lithosphere extension and breakup. Geol Soc London Spec Publ 282: 77–110

  • Richards JP (2000) Lineaments revisited. SEG Newsletter 42

  • Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: products of the remelting of subduction-modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Richards JP, Chappell BW, McCulloch MT (1990) Intraplate-type magmatism in a continent-island arc collision zone: Porgera intrusive complex, Papua New Guinea. Geology 18:958–961

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, Northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Econ Geol 96:271–305

    Google Scholar 

  • Rock NMS, Duller P, Haszeldine RS, Groves DI (1987) Lamprophyres as potential gold exploration targets: Some preliminary observations and speculations. In SE Ho, DI Groves (eds) Recent Advances in Understanding Precambrian Gold Deposits, Geology Dept. & University Extension, Univ WA Publ 11: 271–286

  • Rohrlach BD, Loucks RR (2005) Multi-million year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In: Porter TM (ed) Super porphyry copper and gold deposits: a global perspective. PGC, Adelaide, pp 270–313, v.2

    Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59

    Article  Google Scholar 

  • Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Miner Deposita 43:715–734

    Article  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnstone DA, Barton MD (2005) Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol 100th Anniv Vol: 251–298

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralisation in Kerman Cenozoic arc rocks, southeastern Iran. Miner Deposita 44:265–283

    Article  Google Scholar 

  • Sherlock RL, Roth T, Spooner ETC, Bray CJ (1999) Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: fluid inclusion and stable isotope evidence. Econ Geol 94:803–824

    Article  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388

    Article  Google Scholar 

  • Sillitoe RH (2002) Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Miner Deposita 37:4–13

    Article  Google Scholar 

  • Sillitoe RH (2008) Major gold deposits and belts of the North and South American Cordillera: distribution, tectonomagmatic settings and metallogenic considerations. Econ Geol 103:663–688

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. Econ Geol 100th Anniv Vol: 485–522

  • Sisson TW (2003) Native gold in Hawaiian alkalic magma. Econ Geol 98:643–648

    Google Scholar 

  • Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning CM, Raymond O, Davidson G (2007) Timing of Iron Oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton, South Australia. Econ Geol 102:1441–1470

    Article  Google Scholar 

  • Sleep NH (1996) Lateral flow of hot plume material ponded at sublithospheric depths. J Geophys Res 101:28 065–28 083

    Article  Google Scholar 

  • Sleep NH (2009) Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. Geochem Geophys Geosyst 10:Q11010. doi:10.1029/2009GC002702

    Article  Google Scholar 

  • Snyder DB, Clowes RM, Cook FA, Erdmer P, Evenchich CA, van der Velden AJ, Hall KW (2002) Proterozoic prism arrests suspect terranes: insights into the ancient Cordilleran margin from seismic reflection data. GSA Today 12:4–9

    Article  Google Scholar 

  • Snyder DB, Pilkington M, Clowes RM, Cook FA (2009) The underestimated Proterozoic component of the Canadian Cordillera accretionary margin. In: Cawood PA, Kroner A (eds). Earth accretionary systems in space and time. Geol Soc London Spec Publ 318: 1–36

  • Solomon M (1990) Subduction, arc reversal and the origin of porphyry copper-gold deposits in island arcs. Geology 18:630–633

    Article  Google Scholar 

  • Squire RJ, Miller JMc (2003) Synchronous compression and extension in East Gondwana: tectonic controls on world-class gold deposits at 440 Ma. Geology 31:1073–1076

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders AD, Norry MJ (eds). Magmatism in the ocean basins. Geol Soc London Spec Publ 42: 313–345

  • Syracuse E, Abers G (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi:10.1029/2005GC001045

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 p

    Google Scholar 

  • Taylor CD, Premo WR, Meier AL, Taggart JE (2008) The metallogeny of late Triassic rifting of the Alexander Terrane in Southeastern Alaska and Northwestern British Columbia. Econ Geol 103:89–115

    Article  Google Scholar 

  • Titley SR (2001) Crustal affinities of metallogenesis in the American Southwest. Econ Geol 96:1323–1342

    Google Scholar 

  • Wang K, Chung S, Chen C, Shinjo R, Yang TF, Chen CH (1999) Post-collisional magmatism around northern Taiwan and its relation with the opening of the Okinawa Trough. Tectonophysics 308:363–376

    Article  Google Scholar 

  • Watanabe Y (2005) Late Cenozoic evolution of epithermal gold metallogenic provinces in Kyushu, Japan. Miner Deposita 40:307–323

    Article  Google Scholar 

  • Whitmeyer SJ, Karlstrom KE (2007) Tectonic model for the Proterozoic growth of North America. Geosphere 3:220–259

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontbote L, De Haller A, Mark G, Oliver NHS (2005) Iron oxide copper gold deposits: geology, space-time distribution and possible modes of origin. Econ Geol 100th Anniv Vol: 371–405

  • Willman CE, Korsch RJ, Moore DH, Cayley RA, Lisitsin VA, Rawling TJ, Morand VJ, O’Shea PJ (2010) Crustal-scale fluid pathways and source rocks in the Victorian gold province, Australia: insights from deep seismic reflection profiles. Econ Geol 105:895–915

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383

    Article  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain Island Arc: further insights into melting and mass-transfer processes. J Petrol 39:1641–1668

    Article  Google Scholar 

  • Yakubchuk A (2010) Global orogenic gold and related metallogeny through time. Proceedings of SEG 2010 Conference, Keystone, Colorado: The challenge of finding new mineral resources: Poster extended abstracts on CD.

  • Zheng J, Sun M, Zhou M-F, Robinson P (2005) Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithosphere evolution of the North China Craton. Geochim Cosmochim Acta 69:3401–3418

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the seminal contribution of the late Nicholas Rock, who proposed a key relationship between alkaline magmas and gold enrichment over twenty years ago. Other geoscientists who have influenced our thinking include (in alphabetical order): Frank Bierlein, Rich Goldfarb, Nick Hayward, Rob Kerrich and Daniel Muller. The Centre for Global Metallogeny and its successor, the Centre for Exploration Targeting, have provided a fertile environment for holistic first-order thinking on mineral deposits for the past two decades. Comments by the reviewers have substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. A. Hronsky.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hronsky, J.M.A., Groves, D.I., Loucks, R.R. et al. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner Deposita 47, 339–358 (2012). https://doi.org/10.1007/s00126-012-0402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0402-y

Keywords

Navigation