Skip to main content
Log in

The exhumation of high- and ultrahigh-pressure metamorphic terranes in subduction zone: Questions and discussions

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In terms of petrology, thermomechanical simulation is an important frontier to study the geodynamic process of the exhumation and uplift of high pressure (HP) to ultrahigh pressure (UHP) metamorphic rocks in subduction zones and collision orogenic belts. Based on the recent petrological studies and numerical modellings for the exhumation of HP to UHP metamorphic terranes, the exhumation mechanisms of HP to UHP metamorphic terranes can be roughly summarized into ten types: channel flow, diapiric exhumation, a coexistence mechanism of channel flow and diapiric exhumation, slab breakoff, multi-stage exhumation, divergent plate motion (including slab rollback and the upper-plate divergent motion away from the subducted plate), overthrust exhumation, overpressure mechanism, wedge-like extrusion and microplate rotation. The exhumation of high-density UHP oceanic eclogites is a relative controversial issue. Some of our recent researches on quantitatively determining the exhumation mechanism of UHP oceanic eclogites using thermomechanical and phase equilibrium modelling was introduced in details in this paper. We obtained the 3-D density evolutions of three-type subducted oceanic materials (MORB, serpentine and oceanic sediments) in P-T space by the methods of phase equilibrium and density calculation. According to the density difference between the metabasic and their surrounding rocks, the exhumed eclogites could be divided into two types. The first category, the self-exhumation eclogites (ρMORB<ρmantle), which can exhume driven by their own buoyancy, an example is the coesite-bearing oceanic eclogites from Southwest Tianshan. Another is the carried-exhumation eclogites (ρMORB>ρmantle), which can only be carried back to the surface with the assistance of low-density metasediments and serpentinite due to their negative buoyancy; the coesite-bearing UHP eclogites of Zermatt-Saas in the Western Alps is a typical example. Besides, we further explored the ultimate self-exhumation depth, exhumation mechanisms, the effect of the transition from high pressure to ultra-high pressure on the exhumation process of oceanic eclogites and the spatial distribution of exhumed HP-UHP metamorphic terranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers G A, Hacker B R. 2016. A MATLAB toolbox and EXCEL workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst, 1: 616–624

    Google Scholar 

  • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Sci Rev, 1: 53–79

    Google Scholar 

  • Augier R, Agard P, Monie P, Jolivet L, Robin C, Booth-Rea G. 2010. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): In situ40Ar/39Ar ages and P-T-d-t paths for the Nevado-Filabride complex. J Metamorph Geol, 1: 357–381

    Google Scholar 

  • Baldwin S L, Monteleone B D, Webb L E, Fitzgerald P G, Grove M, June Hill E. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature, 1: 263–267

    Google Scholar 

  • Baldwin S L, Webb L E, Monteleone B D. 2008. Late Miocene coesiteeclogite exhumed in the Woodlark Rift. Geology, 1: 735–738

    Google Scholar 

  • Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 1: 116–129

    Google Scholar 

  • Bottrill A D, van Hunen J, Cuthbert S J, Brueckner H K, Allen M B. 2014. Plate rotation during continental collision and its relationship with the exhumation of UHP metamorphic terranes: Application to the Norwegian Caledonides. Geochem Geophys Geosyst, 1: 1766–1782

    Google Scholar 

  • Brown M. 2007. Metamorphic conditions in orogenic belts: A record of secular change. Int Geol Rev, 1: 193–234

    Google Scholar 

  • Brun J P, Faccenna C. 2008. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett, 1: 1–7

    Google Scholar 

  • Burov E, Jolivet L, Le Pourhiet L, Poliakov A. 2001. A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics, 1: 113–136

    Google Scholar 

  • Burov E, Francois T, Yamato P, Wolf S. 2014. Mechanisms of continental subduction and exhumation of HP and UHP rocks. Gondwana Res, 1: 464–493

    Google Scholar 

  • Caby R. 1994. Precambrian coesite from northern Mali: First record and implications for plate tectonics in the trans-Saharan segment of the Pan-African belt. Eur J Mineral, 1: 235–244

    Google Scholar 

  • Carlos E, de A G, Rubatto D, Hermann J, Cordani U, Caby R, Basei M. 2014. Ediacaran 2500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nat Commun, 5: 5198

    Google Scholar 

  • Carswell D A. 1990. Eclogites and the Eclogite Facies: Definitions and Classification. In: Carswell D A, ed. Eclogite Facies Rocks. Glasgow: Blackie

    Google Scholar 

  • Carswell D A, Compagnoni R. 2003. Ultra-High Pressure Metamorphism. EMU Notes Mineral, 1: 1–508

    Google Scholar 

  • Chemenda A I, Mattauer M, Malavieille J, Bokun A N. 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth Planet Sci Lett, 1: 225–232

    Google Scholar 

  • Chen Y, Ye K, Wu T F, Guo S. 2013. Exhumation of oceanic eclogites: Thermodynamic constraints on pressure, temperature, bulk composition and density. J Metamorph Geol, 1: 549–570

    Google Scholar 

  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib Mineral Petrol, 1: 107–118

    Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 1: 1–14

    Google Scholar 

  • Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys, 1: 455–500

    Google Scholar 

  • Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys, 1: 501–545

    Google Scholar 

  • Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 1: 524–541

    Google Scholar 

  • Davies J H, von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 1: 85–102

    Google Scholar 

  • Du J X, Zhang L F, Bader T, Shen T T. 2014. Metamorphic evolution of ultrahigh-pressure rocks from Chinese southwestern Tianshan and a possible indicator of UHP metamorphism using garnet composition in low-T eclogites. J Asian Earth Sci, 1: 69–88

    Google Scholar 

  • Duretz T, Gerya T V, Kaus B J P, Andersen T B. 2012. Thermomechanical modeling of slab eduction. J Geophys Res, 117: B08411

    Google Scholar 

  • Duretz T, Gerya T V, May D A. 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 1: 244–256

    Google Scholar 

  • Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth Model. Phys Earth Planet Inter, 1: 297–356

    Google Scholar 

  • Ellis S M, Little T A, Wallace L M, Hacker B R, Buiter S J H. 2011. Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks. Earth Planet Sci Lett, 1: 427–438

    Google Scholar 

  • Erdman M E, Lee C T A. 2014. Oceanic- and continental-type metamorphic terranes: Occurrence and exhumation mechanisms. Earth-Sci Rev, 1: 33–46

    Google Scholar 

  • Ernst W G, Maruyama S, Wallis S. 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc Natl Acad Sci USA, 1: 9532–9537

    Google Scholar 

  • Ernst W G. 2001. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices-Implications for arcs and continental growth. Phys Earth Planet Inter, 1: 253–275

    Google Scholar 

  • Ernst W G. 2005. Alpine and Pacific styles of Phanerozoic mountain building: Subduction-zone petrogenesis of continental crust. Terra Nova, 1: 165–188

    Google Scholar 

  • Ernst W G. 2006. Preservation/exhumation of ultrahigh-pressure subduction complexes. Lithos, 1: 321–335

    Google Scholar 

  • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 1: 6–1–6–19

    Google Scholar 

  • Gerya T, Stöckhert B. 2005. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci-Geol Rundsch, 1: 250–274

    Google Scholar 

  • Guillot S, Hattori K H, de Sigoyer J. 2000. Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, northwest Himalaya. Geology, 1: 199–202

    Google Scholar 

  • Guillot S, Hattori K H, de Sigoyer J, Nägler T, Auzende A L. 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet Sci Lett, 1: 115–127

    Google Scholar 

  • Gilotti J A, Krogh Ravna E J. 2002. First evidence for ultrahigh-pressure metamorphism in the North- East Greenland Caledonides. Geology, 1: 551–554

    Google Scholar 

  • Gilotti J A, Nutman A P, Brueckner H K. 2004. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. Contrib Mineral Petrol, 1: 216–235

    Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Springer Berlin Heidelberg. 175–205

    Google Scholar 

  • Hacker B R, Ratschbacher L, Webb L, McWilliams M O, Ireland T, Calvert A, Dong S, Wenk H R, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. J Geophys Res, 1: 13339–13364

    Google Scholar 

  • Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res, 108: 2029

    Google Scholar 

  • Hacker B R, Wallis S R, Ratschbacher L, Grove M, Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25: TC5006

    Google Scholar 

  • Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination. Earth Planet Sci Lett, 1: 501–516

    Google Scholar 

  • Hacker B R, Gerya T V. 2013. Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 1: 79–88

    Google Scholar 

  • Hall P S, Kincaid C. 2001. Diapiric flow at subduction zones: A recipe for rapid transport. Science, 1: 2472–2475

    Google Scholar 

  • Hermann J, Müntener O, Scambelluri M. 2000. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 1: 225–238

    Google Scholar 

  • Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depth: Geochemistry of ultrahigh-pressure rocks. In: Turekian K, Holland H, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 340–341

    Google Scholar 

  • Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 1: 1910–1913

    Google Scholar 

  • Hilairet N, Reynard B. 2008. Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics, 1: 24–29

    Google Scholar 

  • Horodyskyj U, Lee C T A, Luffi P. 2009. Geochemical evidence for exhumation of eclogite via serpentinite channels in ocean-continent subduction zones. Geosphere, 1: 426–438

    Google Scholar 

  • Husson L, Brun J P, Yamato P, Faccenna C. 2010. Episodic slab rollback fosters exhumation of HP-UHP rocks. Geophys J Int, 1: 1292–1300

    Google Scholar 

  • Jabaloy-Sánchez A, Gómez-Pugnaire M T, Padrón-Navarta J A, López Sánchez-Vizcaíno V, Garrido C J. 2015. Subduction- and exhumation-related structures preserved in metaserpentinites and associated metasediments from the Nevado-Filábride Complex (Betic Cordillera, SE Spain). Tectonophysics, 644–1: 40–57

    Google Scholar 

  • Jahn B, Caby R, Monie P. 2001. The oldest UHP eclogites of the world: Age of UHP metamorphism, nature of protoliths and tectonic implications. Chem Geol, 1: 143–158

    Google Scholar 

  • Jolivet L, Daniel J M, Truffert C, Goffé B. 1994. Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions. Lithos, 1: 3–30

    Google Scholar 

  • Kylander-Clark A R C, Hacker B R, Mattinson C G. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 321–1: 115–120

    Google Scholar 

  • Leng W, Mao W. 2015. Geodynamic modeling of thermal structure of subduction zones. Sci China Earth Sci, 1: 1070–1083

    Google Scholar 

  • Li Z H, Gerya T V. 2009. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 114: B09406

    Google Scholar 

  • Li Z H, Gerya T V, Burg J P. 2010. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J Metamorph Geol, 1: 227–247

    Google Scholar 

  • Li Z H, Xu Z Q, Gerya T V. 2011. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet Sci Lett, 1: 65–77

    Google Scholar 

  • Li Z H. 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Sci China Earth Sci, 1: 47–69

    Google Scholar 

  • Liao J, Malusà M G, Zhao L, Baldwin S L, Fitzgerald P G, Gerya T. 2018. Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks. Earth Planet Sci Lett, 1: 67–80

    Google Scholar 

  • Lin Y H, Zhang L F, Ji J Q, Wang Q J, Song S G. 2010. 40Ar/39Ar isochron ages of lawsonite blueschists from Jiuquan in the northern Qilian Mountain, NW China, and their tectonic implications. Chin Sci Bull, 1: 2021–2027

    Google Scholar 

  • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 1: 199–231

    Google Scholar 

  • Little T A, Hacker B R, Gordon S M, Baldwin S L, Fitzgerald P G, Ellis S, Korchinski M. 2011. Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics, 1: 39–68

    Google Scholar 

  • Liu M Q, Li Z H, Yang S H. 2017. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones. J Asian Earth Sci, 1: 16–36

    Google Scholar 

  • Liu L, Zhang J F, Cao Y T, Green Ii H W, Yang W Q, Xu H J, Liao X Y, Kang L. 2018. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China. Earth Planet Sci Lett, 1: 353–362

    Google Scholar 

  • Lü Z, Zhang L F, Du J X, Bucher K. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. Am Miner, 1: 1845–1850

    Google Scholar 

  • Lü Z, Zhang L F, Du J X, Bucher K. 2009. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication. J Metamorph Geol, 1: 773–787

    Google Scholar 

  • Malusà M G, Faccenna C, Garzanti E, Polino R. 2011. Divergence in subduction zones and exhumation of high pressure rocks (Eocene western Alps). Earth Planet Sci Lett, 1: 21–32

    Google Scholar 

  • Malusà M G, Faccenna C, Baldwin S L, Fitzgerald P G, Rossetti F, Balestrieri M L, Danišík M, Ellero A, Ottria G, Piromallo C. 2015. Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (western Alps, Calabria, Corsica). Geochem Geophys Geosyst, 1: 1786–1824

    Google Scholar 

  • Mancktelow N S. 1995. Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks. J Geophys Res, 1: 571–583

    Google Scholar 

  • Mancktelow N S. 2008. Tectonic pressure: Theoretical concepts and modelled examples. Lithos, 1: 149–177

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 1: 485–594

    Google Scholar 

  • Massonne H J, Willner A P, Gerya T. 2007. Densities of metapelitic rocks at high to ultrahigh pressure conditions: What are the geodynamic consequences? Earth Planet Sci Lett, 1: 12–27

    Google Scholar 

  • Maunder B, van Hunen J, Magni V, Bouilhol P. 2016. Relamination of mafic subducting crust throughout Earth’s history. Earth Planet Sci Lett, 1: 206–216

    Google Scholar 

  • McClelland W C, Power S E, Gilotti J A, Mazdab F K, Wopenka B. 2006. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides. Spec Pap Geol Soc Am, 1: 23–43

    Google Scholar 

  • Miyashiro A. 1973. Paired and unpaired metamorphic belts. Tectonophysics, 1: 241–254

    Google Scholar 

  • Monteleone B D, Baldwin S L, Webb L E, Fitzgerald P G, Grove M, Schmitt A K. 2010. Late Miocene-Pliocene eclogite facies meta-morphism, D’Entrecasteaux Islands, SE Papua New Guinea. J Metamorph Geol, 1: 245–265

    Google Scholar 

  • O’Brien P J, Zotov N, Law R, Khan M A, Jan M Q. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29: 435

    Google Scholar 

  • Parrish R R, Gough S J, Searle M P, Waters D J. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 1: 989–992

    Google Scholar 

  • Pilchin A. 2005. The role of serpentinization in exhumation of high- to ultra-high-pressure metamorphic rocks. Earth Planet Sci Lett, 1: 815–828

    Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 1: 325–394

    Google Scholar 

  • Raimbourg H, Jolivet L, Leroy Y. 2007. Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophys J Int, 1: 379–401

    Google Scholar 

  • Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M, McAlpine S R B. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nat Geosci, 1: 338–342

    Google Scholar 

  • Schwartz S, Allemand P, Guillot S. 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: Insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics, 1: 193–206

    Google Scholar 

  • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res, 1: 10,229–10,245

    Google Scholar 

  • Sizova E, Gerya T, Brown M. 2012. Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. J Metamorph Geol, 1: 927–955

    Google Scholar 

  • Smith D C. 1984. Coesite in clinopyroxene in the caledonides and its implications for geodynamics. Nature, 1: 641–644

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L, Su L, Song B, Liu D. 2006. Evolution from oceanic subduction to continental collision: A case study from the northern Tibetan Plateau based on geochemical and geochronological data. J Petrol, 1: 435–455

    Google Scholar 

  • Song S, Niu Y, Su L, Wei C, Zhang L. 2014. Adakitic (tonalitic-trondh-jemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochim Cosmochim Acta, 1: 42–62

    Google Scholar 

  • Tan Z, Agard P, Gao J, John T, Li J L, Jiang T, Bayet L, Wang X S, Zhang X. 2017. P-T-time-isotopic evolution of coesite-bearing eclogites: Implications for exhumation processes in SW Tianshan. Lithos, 278–1: 1–25

    Google Scholar 

  • Treloar P J, O’Brien P J, Parrish R R, Khan M A. 2003. Exhumation of early tertiary, coesite-bearing eclogites from the Pakistan Himalaya. J Geol Soc, 1: 367–376

    Google Scholar 

  • Ueda H, Usuki T, Kuramoto Y. 2004. Intraoceanic unroofing of eclogite facies rocks in the Omachi Seamount, Izu-Bonin frontal arc. Geology, 1: 849–852

    Google Scholar 

  • Wallace L M, Stevens C, Silver E, McCaffrey R, Loratung W, Hasiata S, Stanaway R, Curley R, Rosa R, Taugaloidi J. 2004. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. J Geophys Res, 1: 219–240

    Google Scholar 

  • Wang Y, Zhang L F, Li Z H, Li Q Y, Bader T. 2019. The exhumation of subducted oceanic eclogite: Insights from phase equilibrium and thermomechanical modeling. Tectonics, 1: 1764–1797

    Google Scholar 

  • Warren C J. 2012. Up the down escalator: The exhumation of (ultra)-high pressure terranes during on-going subduction. Solid Earth Discuss, 1: 745–781

    Google Scholar 

  • Warren C J, Beaumont C, Jamieson R A. 2008a. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett, 1: 129–145

    Google Scholar 

  • Warren C J, Beaumont C, Jamieson R A. 2008b. Formation and exhumation of ultra-high-pressure rocks during continental collision: Role of detachment in the subduction channel. Geochem Geophys Geosyst, 9: Q04019

    Google Scholar 

  • Webb L E, Baldwin S L, Little T A, Fitzgerald P G. 2008. Can microplate rotation drive subduction inversion. Geology, 1: 823–826

    Google Scholar 

  • Xia B, Zhang L F, Du Z, Xu B. 2019. Petrology and age of Precambrian Aksu blueschist, NW China. Precambrian Res, 1: 295–311

    Google Scholar 

  • Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a paleoproterozoic carbonated slab. Nat Commun, 9: 2790

    Google Scholar 

  • Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L, Tiberi C. 2007. Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps). J Geophys Res, 112: B07410

    Google Scholar 

  • Yin A, Manning C E, Lovera O, Menold C A, Chen X, Gehrels G E. 2007. Early paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China. Int Geol Rev, 1: 681–716

    Google Scholar 

  • Yu H L, Zhang L F, Wei C J, Li X L, Guo J H. 2017. Age and P-T conditions of the Gridino-type eclogite in the Belomorian Province, Russia. J Metamorph Geol, 1: 855–869

    Google Scholar 

  • Zack T, Rivers T, Brumm R, Kronz A. 2004. Cold subduction of oceanic crust: Implications from a lawsonite eclogite from the Dominican Republic. Eur J Mineral, 1: 909–916

    Google Scholar 

  • Zhang L, Jiang W, Wei C, Dong S. 1999. Discovery of deerite from the aksu precambrian blueschist terrane and its geological significance. Sci China Ser D-Earth Sci, 1: 233–239

    Google Scholar 

  • Zhang L F, Ellis D J, Williams S, Jiang W B. 2002. Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am Miner, 1: 861–866

    Google Scholar 

  • Zhang L F. 2007. Extreme metamorphism: the frontier of metamorphic geology. Earth Sci Front, 1: 33–42

    Google Scholar 

  • Zhang G B, Song S G, Zhang L F, Niu Y L. 2008. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 1: 99–118

    Google Scholar 

  • Zhang L F, Wang Q J, Song S G. 2009. Lawsonite blueschist in Northern Qilian, NW China: P-T pseudosections and petrologic implications. J Asian Earth Sci, 1: 354–366

    Google Scholar 

  • Zhang L F, Du J X, Lü Z, Yang X, Gou L L, Xia B, Chen Z Y, Wei C J, Song S G. 2013. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: Peak metamorphic age and P-T path. Chin Sci Bull, 1: 4378–4383

    Google Scholar 

  • Zhang L F, Wang Y, Zhang L J, Lü Z. 2019. Ultrahigh pressure meta-morphism and tectonic evolution of Southwestern Tianshan orogenic belt, China: A comprehensive review. Geol Soc Lond Spec Publ, 1: 133–152

    Google Scholar 

  • Zhao L, Paul A, Guillot S, Solarino S, Malusà M G, Zheng T, Aubert C, Salimbeni S, Dumont T, Schwartz S, Zhu R, Wang Q. 2015. First seismic evidence for continental subduction beneath the Western Alps. Geology, 1: 815–818

    Google Scholar 

  • Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 1: 327–358

    Google Scholar 

  • Zheng Y F, Zhang L, McClelland W C, Cuthbert S. 2012. Processes in continental collision zones: Preface. Lithos, 136–1: 1–9

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 1: 4371–4377

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 1: 1045–1069

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 1: 495–519

    Google Scholar 

  • Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 1: 46–73

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen R X. 2018. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Compositional inheritance and metamorphic modification. Geol Soc Lond Spec Publ, 1: 89–132

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Sci Bull, 1: 4371–4377

    Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Yongfei ZHENG and Professor Fuyuan WU for the invitation. We would like to express our gratitude to Professor Zhonghai LI in University of Chinese Academy of Science for his useful discussion and three anonymous reviewers for their constructive comments. Many thanks also go to Dr. Lijuan ZHANG, Huanglu YU, Qingyun LI, Zhanzhan DUAN, Yunxiu LI, and Han HU for their help in the writing process. This study was supported by the National Basic Research Program of China (Grant No. 2015CB856105) and the National Natural Science Foundation of China (Grant Nos. 91755206, 41520104004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Y. The exhumation of high- and ultrahigh-pressure metamorphic terranes in subduction zone: Questions and discussions. Sci. China Earth Sci. 63, 1884–1903 (2020). https://doi.org/10.1007/s11430-020-9579-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9579-3

Keywords

Navigation