Skip to main content
Log in

Accretionary complex: Geological records from oceanic subduction to continental deep subduction

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Accretionary complex was usually formed by offscraping of the subducting crustal material over the trench and thus often referred to as subduction zone mélange. The structure, composition and forming process of accretionary wedges can provide important insights into the evolution history of ocean basin, ocean-continent material cycle, continental accretion and thus contribute to understanding of the origin of plates and the growth of continents. Accretionary complex is characterized by a block-in-matrix structure associated with imbricate thrusts and isoclinal folds, diversified metamorphic types and intense water-rock interactions, which are distinct to the traditional stratigraphy. Since the proposal of the concept of accretionary wedge over a hundred years ago, great progress has been made in a variety of research focuses, such as the identification of the distribution of accretionary complexes, their compositions and formation mechanisms, the affinities of the matrix and igneous rocks, the recognition of the Ocean Plate Stratigraphy (OPS), the reconstruction of oceanic basin, the dynamic background of the tectonic evolution, the relationship between subduction zone and orogenic belt and, in particular, the accretionary complexes in continental subduction zones. These studies have significantly improved our understanding of the plate tectonic theory. Challenges remain in the identification of ancient accretionary complexes, the detailed analysis of accretionary complex zones, the accretion characteristics during continental collision, and the geochemical tracing of water-rock interaction during the accretion. China contains representative orogenic belts and accretionary complex zones in the world, and its geological records provide the best opportunity to make new breakthroughs in understanding of the plate tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aouizerat A, Xiao W J, Schulmann K, Jerabek P, Monie P, Zhou J B, Zhang J J, Ao S J, Li R, Li Y C, Esmaeili R. 2019. Structures, strain analyses, and 40Ar/39Ar ages of blueschist-bearing Heilongjiang Complex (NE China): Implications for the Mesozoic tectonic evolution of NE China. Geol J, 54: 716–745

    Google Scholar 

  • Bailey E B, McCallien W J. 1950. The Ankara melange and the Anatolian thrust. Nature, 166: 938–940

    Google Scholar 

  • Bailey E B, McCallien W J. 1953. Serpentine Lavas, the Ankara Mélange and the Anatolian Thrust. Trans R Soc Edinb, 62: 403–442

    Google Scholar 

  • Brown D, Ryan P D, Afonso J C, Boutelier D, Burg J P, Byrne T, Calvert A, Cook F, DeBari S, Dewey J F, Gerya T V, Harris R, Herrington R, Konstantinovskaya E, Reston T, Zagorevski A. 2011. Arc-continent collision: The making of an orogen. In: Brown D, Ryan P D, eds. Arc-Continent Collision. Berlin Heidelberg: Springer-Verlag. 477–493

    Google Scholar 

  • Carson B, Screaton E J. 1998. Fluid flow in accretionary prisms: Evidence for focused, time-variable discharge. Rev Geophys, 36: 329–351

    Google Scholar 

  • Cawood P A, Kroner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Lond Spec Publ, 318: 1–36

    Google Scholar 

  • Chapple W M. 1978. Mechanics ofthin-skinned fold-and-thrust belts. Geol Soc Am Bull, 89: 1189–1198

    Google Scholar 

  • Cheng Y, Xiao Q H, Li T D, Guo L J, Li Y, Fan Y X, Pang J L. 2019. Magmatism and tectonic background of Early Permian intra-oceanic arc in Diyanmiao subduction accretion complex belt in Eastern Margin of Central Asian orogenic belt (in Chinese). J Earth Sci, 44: 3454–3468

    Google Scholar 

  • Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys, 42: RG2001

    Google Scholar 

  • Cloos M. 1983. Comparative study ofmelange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. J Geol, 91: 291–306

    Google Scholar 

  • Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res, 88: 1153–1172

    Google Scholar 

  • Davis E E, Hyndman R D. 1989. Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geol Soc Am Bull, 101: 1465–1480

    Google Scholar 

  • Defant M J, Jackson T E, Drummond M S, de Boer J Z, Bellon H, Feigenson M D, Maury R C, Stewart R H. 1992. The geochemistry of young volcanism throughout Western Panama and Southeastern Costa Rica: An overview. J Geol Soc, 149: 569–579

    Google Scholar 

  • Dickinson W R. 2008. Accretionary Mesozoic-Cenozoic expansion of the Cordilleran continental margin in California and adjacent Oregon. Geosphere, 4: 329–353

    Google Scholar 

  • Feng Y M, Zhang Y. 2018. Introduction and commentary on ocean plate stratigrapgy (in Chinese). Geol Bull China, 37: 523–531

    Google Scholar 

  • Festa A, Pini G A, Ogata K, Dilek Y. 2019. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Res, 74: 7–30

    Google Scholar 

  • Foster D A, Gray D R, Bucher M. 1999. Chronology of deformation within the turbidite-dominated, Lachlan orogen: Implications for the tectonic evolution of eastern Australia and Gondwana. Tectonics, 18: 452–485

    Google Scholar 

  • Foster D A, Gray D R. 2000. Evolution and structure of the Lachlan Fold Belt (Orogen) of Eastern Australia. Annu Rev Earth Planet Sci, 28: 47–80

    Google Scholar 

  • Gao J, Zhu M T, Wang X S, Hong T, Li G M, Li J L, Xiao W J, Qin K Z, Zeng Q D, Shen P, Xu X W, Zhang Z C, Zhou J B, Lai Y, Zhang X H, Sun J G, Wan B, Wang B. 2019. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism (in Chinese). Acta Geol Sin, 93: 24–71

    Google Scholar 

  • Greenly E. 1919. The Geology of Anglesey, Memoir Geological Survey of Great Britain, vol. 2. London: HMSO. 980

    Google Scholar 

  • Hamilton W B. 2011. Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, 123: 1–20

    Google Scholar 

  • Han J X. 1985. Early Permian fusulinids of the Nadanhada Range (in Chinese). Acta Palae Sin, 24: 680–687

    Google Scholar 

  • Han J, Zhou J B, Wang B, Cao J L. 2015. The final collision of the CAOB: Constraint from the zircon U-Pb dating of the Linxi Formation, Inner Mongolia. Geosci Front, 6: 211–225

    Google Scholar 

  • Hosseini-Barzi M, Talbot C J. 2003. A tectonic pulse in the Makran Accretionary Prism recorded in Iranian coastal sediments. J Geol Soc, 160: 903–910

    Google Scholar 

  • Howell D G. 1991. Terrane Tectonics: Mountain Building Continental Growth. In: Wang C S, Qian Y Z, Li H Y, trans. Chengdu: Science and Technology of Sichuan Press

  • Hsü K J. 1968. Principles of melanges and their bearing on the Franciscan-Knoxville paradox. Geol Soc Am Bull, 79: 1063–1074

    Google Scholar 

  • Hsü K J. 1974. Mélanges and their distinction from olistostromes. In: Dott R H Jr, Shaver R H, eds. Modern and Ancient Geosynclinal Sedimentation. Madison: SEPM Spec Pub, 19: 321–333

    Google Scholar 

  • Isozaki Y, Maruyama S, Furuoka F. 1990. Accreted oceanic materials in Japan. Tectonophysics, 181: 179–205

    Google Scholar 

  • Karig D E, Sharman G F. 1975. Subduction and accretion in trenches. Geol Soc Am Bull, 86: 377–389

    Google Scholar 

  • Khain E V, Bibikova E V, Kröner A, Zhuravlev D Z, Sklyarov E V, Fedotova A A, Kravchenko-Berezhnoy I R. 2002. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet Sci Lett, 199: 311–325

    Google Scholar 

  • Kojima S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeogr Palaeoclimatol Palaeoecol, 69: 213–232

    Google Scholar 

  • Kovach V P, Jian P, Yarmolyuk V V, Kozakov I K, Liu D, Terent’eva L B, Lebedev V I, Kovalenko V I. 2005. Magmatism and geodynamics of early stages of the Paleo-Asian ocean formation: Geochronological and geochemical data on ophiolites of the Bayan-Khongor zone. Dokl Earth Sci, 404: 1072–1077

    Google Scholar 

  • Kozakov I K, Kozlovsky A M, Yarmolyuk V V, Kovach V P, Bibikova E V, Kirnozova T I, Plotkina Y V, Zagornaya N Y, Fugzan M M, Erdenejargal C, Lebedev V I, Eenjin G. 2011. Crystalline complexes of the Tarbagatai block of the early Caledonian superterrane of Central Asia. Petrology, 19: 426–444

    Google Scholar 

  • Krohe A. 2017. The Franciscan Complex (California, USA)—The model case for return-flow in a subduction channel put to the test. Gondwana Res, 45: 282–307

    Google Scholar 

  • Kröner A, Alexeiev D V, Rojas-Agramonte Y, Hegner E, Wong J, Xia X, Belousova E, Mikolaichuk A V, Seltmann R, Liu D, Kiselev V V. 2013. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tian-shan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Res, 23: 272–295

    Google Scholar 

  • Kusky T M, Windley B F, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M. 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res, 24: 501–547

    Google Scholar 

  • Li J L. 2004. Basic characteristics of accretion-type orogens (in Chinese). Geol Bull China, 23: 947–951

    Google Scholar 

  • Liou J G, Tsujimori T, Yang J, Zhang R Y, Ernst W G. 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. J Asian Earth Sci, 96: 386–420

    Google Scholar 

  • Liou J G, Tsujimori T, Zhang R Y, Katayama I, Maruyama S. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int Geol Rev, 46: 1–27

    Google Scholar 

  • Liu L, Zhang J, Green Ii H W, Jin Z, Bozhilov K N. 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth Planet Sci Lett, 263: 180–191

    Google Scholar 

  • Liu Y C, Liu L X, Li Y, Gu X F, Song B. 2017. Zircon U-Pb geochronology and petrogenesis of metabasites from the western Beihuaiyang zone in the Hong’an orogen, central China: Implications for detachment within subducting continental crust at shallow depths. J Asian Earth Sci, 145: 74–90

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594

    Google Scholar 

  • Mizutani S, Shao J A, Zhang Q L. 1989. The Nadanhada Terrane in relation to Mesozoic tectonics on continental margins of east Asia. Acta Geol Sin, 3: 204–216

    Google Scholar 

  • Moore J C, Vrolijk P. 1992. Fluids in accretionary prisms. Rev Geophys, 30: 113–135

    Google Scholar 

  • Nemcok M, Coward M P, Sercombe W J, Klecker R A. 1999. Structure of the West Carpathian accretionary wedge: Insights from cross section construction and sandbox validation. Phys Chem Earth Part A-Solid Earth Geod, 24: 659–665

    Google Scholar 

  • Ogawa Y. 2019. Conceptual consideration and outcrop interpretation on early stage deformation of sand and mud in accretionary prisms for chaotic deposit formation. Gondwana Res, 74: 31–50

    Google Scholar 

  • Platt J P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull, 97: 1037–1053

    Google Scholar 

  • Raymond LA. 1984. Classification of mélanges. In: Raymond LA, ed. Melanges: Their Nature, Origin, and Significance. Geol Soc Am Spec Pap, 198: 7–20

    Google Scholar 

  • Raymond L A. 2019. Perspectives on the roles of melanges in subduction accretionary complexes: A review. Gondwana Res, 74: 68–89

    Google Scholar 

  • Safonova I, Maruyama S, Kojima S, Komiya T, Krivonogov S, Koshida K. 2016. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry. Gondwana Res, 33: 92–114

    Google Scholar 

  • Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307

    Google Scholar 

  • Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge Univ Press. 486–640

    Google Scholar 

  • Sikder A M, Alam M M. 2003. 2-D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin, Bangladesh. Sediment Geol, 155: 209–226

    Google Scholar 

  • Song D F, Xiao W J, Han C M, Tian Z H. 2014. Polyphase deformation of a Paleozoic forearc-arc complex in the Beishan orogen, NW China. Tectonophysics, 632: 224–243

    Google Scholar 

  • Song S G, Zhang G B, Zhang C, Zhang L F, Wei C J. 2013. Dynamic process of oceanic subduction and continental collision: Petrological constraints of HP-UHP belts in Qilian-Qaidam, the northern Tibetan Plateau (in Chinese). Chin Sci Bull, 58: 2240–2245

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Google Scholar 

  • Stern R J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 52: 578–591

    Google Scholar 

  • Taira A. 2001. Tectonic evolution of the Japanese Island Arc system. Annu Rev Earth Planet Sci, 29: 109–134

    Google Scholar 

  • Taira A, Pickering K T, Windley B F, Soh W. 1992. Accretion of Japanese island arcs and implications for the origin of Archean greenstone belts. Tectonics, 11: 1224–1244

    Google Scholar 

  • Uyeda S. 1982. Subduction zones: An introduction to comparative sub-ductology. Tectonophysics, 81: 133–159

    Google Scholar 

  • von Huene R, Ranero C R, Vannucchi P. 2004. Generic model of sub-duction erosion. Geology, 32: 913–916

    Google Scholar 

  • von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316

    Google Scholar 

  • Wakabayashi J. 2011. Mélanges of the Franciscan Complex, California: Diverse structural settings, evidence for sedimentary mixing, and their connection to subduction processes. Geol Soc Am Spec Pap, 480: 117–141

    Google Scholar 

  • Wakabayashi J. 2012. Subducted sedimentary serpentinite mélanges: Record of multiple burial-exhumation cycles and subduction erosion. Tectonophysics, 568–569: 230–247

    Google Scholar 

  • Wakabayashi J. 2019. Sedimentary compared to tectonically-deformed serpentinites and tectonic serpentinite mélanges at outcrop to petro-graphic scales: Unambiguous and disputed examples from California. Gondwana Res, 74: 51–67

    Google Scholar 

  • Wakita K. 2012. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan. Tectonophysics, 568–569: 74–85

    Google Scholar 

  • Wakita K. 2019. Tectonic setting required for the preservation of sedimentary mélanges in Palaeozoic and Mesozoic accretionary complexes of southwest Japan. Gondwana Res, 74: 90–100

    Google Scholar 

  • Wakita K, Metcalfe I. 2005. Ocean plate stratigraphy in East and Southeast Asia. J Asian Earth Sci, 24: 679–702

    Google Scholar 

  • Windley B. 1992. Proterozoic collisional and accretionary orogens. Dev Precambrian Geol, 10: 419–446

    Google Scholar 

  • Wu F Y, Yang J H, Lo C H, Wilde S A, Sun D Y, Jahn B M. 2007. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Isl Arc, 16: 156–172

    Google Scholar 

  • Xiao W J, Huang B C, Han C M, Sun S, Li J L. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res, 18: 253–273

    Google Scholar 

  • Xiao W, Song D, Windley B F, Li J, Han C, Wan B, Zhang J, Ao S, Zhang Z. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Sci China Earth Sci, 63: 329–361

    Google Scholar 

  • Xiao W J, Windley B F, Hao J, Li J L. 2002. Arc-ophiolite obduction in the Western Kunlun Range (China): Implications for the Palaeozoic evolution of central Asia. J Geol Soc, 159: 517–528

    Google Scholar 

  • Xiao W J, Windley B F, Yuan C, Sun M, Han C M, Lin S F, Chen H L, Yan Q R, Liu D Y, Qin K Z, Li J L, Sun S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am J Sci, 309: 221–270

    Google Scholar 

  • Xiao W J, Li J L, Song D F, Han C M, Wan B, Zhang J W, Ao S J, Zhang Z Y. 2019. Structural analyses and Spatio-Temporal constraints of Accretionary Orogens (in Chinese). Earth Sci, 44: 1661–1687

    Google Scholar 

  • Xiao W J, Windley B, Hao J, Zhai M G. 2003b. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22: 1069

    Google Scholar 

  • Xiao W J, Zhou H, Windley B F, Yuan C, Chen H L, Zhang G C, Fang A M, Li J L. 2003a. Structures and evolution of the multiple accretionary complexes, western Kunlun orogenic belt (China) (in Chinese). Xinjiang Geol, 21: 31–36

    Google Scholar 

  • Xu Z Q, Yang J S, Hou Z Q, Zhang Z M, Zeng L S, Li H B, Zhang J X, Li Z H, Ma X X. 2016. The progress in the study of continental dynamics of the Tibetan Plateau (in Chinese). Geol China, 43: 1–42

    Google Scholar 

  • Xu Z Q, Yang J S, Li W C, Li H Q, Cai Z H, Yan Z, Ma C Q. 2013. Pako-Tethys system and accretionary orogen in the Tibet Plateau (in Chinese). Acta Petrol Sin, 29: 1847–1860

    Google Scholar 

  • Yan Z, Wang Z Q, Yan Q R, Wang T. 2003. Advances on fluid of accretionary wedge in the orogene ofsubduction-accretion (in Chinese). Geol Sci Technol Inform, 22: 1–11

    Google Scholar 

  • Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736

    Google Scholar 

  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Google Scholar 

  • Zhang G W, Dong Y P, Yao A P. 1997. The crustal compositions, structures and tectonic evolution of the Qinling orogenic belt (in Chinese). Geol Shaanxi, 15: 1–14

    Google Scholar 

  • Zhang J E, Xiao W J, Han C M, Ao S J, Yuan C, Sun M, Geng H Y, Zhao G C, Guo Q Q, Ma C. 2011. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Res, 19: 958–974

    Google Scholar 

  • Zhang K X, He W H, Xu Y D, Luo M S, Song B W, Kou X H, Zhang Z Y, Xiao Q H, Pan G T. 2016. Palaeogeographic distribution and tectonic evolution of OPS in China (in Chinese). Earth Sci Front, 23: 1–7

    Google Scholar 

  • Zhang Q L, Mizutani S, Kojima S, Shao J A. 1989. The Nadanhada Terrane in Heilongjiang province (in Chinese). Geol Rev, 35: 67–71

    Google Scholar 

  • Zhang X J, Xu Z Q. 1995. Caledonian subduction-accretionary complex/volcanic arc zone and its deformation features in the middle sector of north Qilian Mountains (in Chinese). Acta Geosci Sin, 2: 153–163

    Google Scholar 

  • Zhao G C, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Sci Rev, 59: 125–162

    Google Scholar 

  • Zhao G C, Sun M, Wilde S A, Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Sci Rev, 67: 91–123

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Zhang L F, McClelland W C, Cuthbert S. 2012. Processes in continental collision zones: Preface. Lithos, 136–139: 1–9

    Google Scholar 

  • Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Google Scholar 

  • Zheng Y F, Zhao G C. 2020. Two styles of plate tectonics in Earth’s history. Sci Bull, 65: 329–334

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen R X. 2019. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Compositional inheritance and metamorphic modification. Geol Soc Lond Spec Publ, 474: 89–132

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 2233–2239

    Google Scholar 

  • Zheng Y F, Zhou J B, Wu Y B, Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int Geol Rev, 47: 851–871

    Google Scholar 

  • Zhou J B. 2000. The accretionary wedge of oceanic plate subduction (in Chinese). Earth Sci Front, 7: 554

    Google Scholar 

  • Zhou J B, Li L. 2017. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. J Asian Earth Sci, 145: 91–100

    Google Scholar 

  • Zhou J B, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res, 23: 1365–1377

    Google Scholar 

  • Zhou J B, Cao J L, Wilde S A, Zhao G C, Zhang J J, Wang B. 2014. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33: 2444–2466

    Google Scholar 

  • Zhou J B, Cheng R H, Liu P J, Liu J H. 2004. Tectonic implications of the low-grade metamorphic rocks for the subduction of continental plate in the Dabie-Sulu orogeny (in Chinese). Adv Earth Sci, 19: 736–742

    Google Scholar 

  • Zhou J B, Pu X G, Hou H S, Han W, Cao J L, Li G Y. 2018. Then Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia (in Chinese). Acta Petrol Sin, 34: 2845–2856

    Google Scholar 

  • Zhou J B, Wilde S A, Zhang X Z, Liu F L, Liu J H. 2012. Detrital zircons from Phanerozoic rocks of the Songliao Block, NE China: Evidence and tectonic implications. J Asian Earth Sci, 47: 21–34

    Google Scholar 

  • Zhou J B, Wilde S A, Zhang X Z, Zhao G C, Liu F L, Qiao D W, Ren S M, Liu J H. 2011. A >1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing’an block and its tectonic implications. Tectonophysics, 509: 280–292

    Google Scholar 

  • Zhou J B, Wilde S A, Zhang X Z, Zhao G C, Zheng C Q, Wang Y J, Zhang X H. 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478: 230–246

    Google Scholar 

  • Zhou J B, Wilde S A, Zhao G C, Zhang X Z, Zheng C Q, Jin W, Cheng H. 2008b. SHRIMP U-Pb zircon dating of the Wulian Complex: Defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China. Precambrian Res, 162: 559–576

    Google Scholar 

  • Zhou J B, Wilde S A, Zhao G C, Zheng C Q, Jin W, Zhang X Z, Cheng H. 2008a. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: Evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. J Geol Soc, 165: 423–433

    Google Scholar 

  • Zhou J B, Wilde S A, Zhao G C, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci Rev, 186: 76–93

    Google Scholar 

  • Zhou J B, Zheng Y F, Li L, Xie Z. 2001. Accretionary wedge of the subduction of the Yangtze Plate (in Chinese). Acta Geol Sin, 75: 338–352

    Google Scholar 

Download references

Acknowledgements

I thank Prof. Yongfei ZHENG for long-term guidance and kind invitation and valuable advice. The final version of this paper benefited from the constructive comments of four reviewers. This work was supported by the National Natural Science Foundation of China (Grant No. 41730210), the National Key Research and Development Program of China (Grant No. 2017YFC0601304), the Chinese Geological Survey (Grant No. DD20190010) and Taishan Scholar Special Project Funds (Grant No. ts201511076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J. Accretionary complex: Geological records from oceanic subduction to continental deep subduction. Sci. China Earth Sci. 63, 1868–1883 (2020). https://doi.org/10.1007/s11430-019-9652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9652-6

Keywords

Navigation