Skip to main content
Log in

Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An M, Shi Y. 2006. Lithospheric thickness of the Chinese continent. Phys Earth Planet Inter, 159: 257–266

    Article  Google Scholar 

  • Arcay D, Lallemand S, Doin M P. 2008. Back-arc strain in subduction zones: Statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015

    Article  Google Scholar 

  • Atwater T, Severinghaus J. 1989. Tectonic maps of the northeast Pacific. In: Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific Ocean and Hawaii, Vol. N: The Geology of North America. Geological Society of America. 15–20

  • Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol, 132: 390–404

    Article  Google Scholar 

  • Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Brey G P, Girnis A V, Bulatov V K, Höfer H E, Gerdes A, Woodland A B. 2015. Reduced sediment melting at 7.5–12GPa: Phase relations, geochemical signals and diamond nucleation. Contrib Mineral Petrol, 170: 1–25

    Article  Google Scholar 

  • Cai Y C, Fan H R, Santosh M, Liu X, Hu F F, Yang K F, Lan T G, Yang Y H, Liu Y. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Res, 24: 601–621

    Article  Google Scholar 

  • Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001

    Article  Google Scholar 

  • Chen L, Zheng T, Xu W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312

    Google Scholar 

  • Chen L, Tao W, Zhao L, Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 267: 56–68

    Article  Google Scholar 

  • Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys Earth Planet Inter, 173: 216–227

    Article  Google Scholar 

  • Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 286: 171–183

    Article  Google Scholar 

  • Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115

    Article  Google Scholar 

  • Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol, 50: 1857–1898

    Article  Google Scholar 

  • Currie C A, Wang K, Hyndman R D, He J. 2004. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc. Earth Planet Sci Lett, 223: 35–48

    Article  Google Scholar 

  • Currie C A, Hyndman R D. 2006. The thermal structure of subduction zone back arcs. J Geophys Res, 111: B08404

    Article  Google Scholar 

  • Currie C A, Beaumont C, Huismans R S. 2007. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology, 35: 1111–1114

    Article  Google Scholar 

  • Currie C A, Huismans R S, Beaumont C. 2008. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet Sci Lett, 269: 436–447

    Article  Google Scholar 

  • Coogan L A. 2014. The lower oceanic crust. Treatise Geochem, 4: 497–541

    Article  Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F, Li Q, Yang Y, Dai M. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 229–244

    Article  Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic- ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121

    Article  Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779

    Article  Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochem Geophys Geosyst, 16: 659–680

    Article  Google Scholar 

  • Dai L Q, Zheng Y F, Zhao Z F. 2016. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 240-243: 327–336

    Article  Google Scholar 

  • Dai F Q, Zhao Z F, Zheng Y F. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen. Chem Geol, 454: 25–43

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3GPa. Contrib Mineral Petrol, 149: 288–305

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Demouchy S, Deloule E, Frost D J, Keppler H. 2005. Pressure and temperature- dependence of water solubility in Fe-free wadsleyite. Am Miner, 90: 1084–1091

    Article  Google Scholar 

  • DePaolo D J, Daley E E. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol, 169: 157–185

    Article  Google Scholar 

  • Duan C, Mao J, Xie G, Chen Z, Ma G, Wang Z, Chen T, Li W. 2016. Zircon U-Pb geochronological and Hf isotope study on Tiaojishan volcanic Formation, Mujicun, North Taihang Mountain and implications for regional metallogeny and magmatism (in Chinese with English abstract). Acta Geol Sin, 90: 250–266

    Article  Google Scholar 

  • Elsasser W M. 1971. Sea-floor spreading as thermal convection. J Geophys Res, 76: 1101–1112

    Article  Google Scholar 

  • Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific Basin. Geol Soc Am Spec Paper, 206: 1–60

    Google Scholar 

  • English J M, Johnston S T, Wang K. 2003. Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis. Earth Planet Sci Lett, 214: 619–632

    Article  Google Scholar 

  • Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the archaean keel? J Petrol, 41: 933–950

    Article  Google Scholar 

  • Fan W M, Guo F, Wang Y J, Lin G, Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in Eastern China. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 733–746

    Article  Google Scholar 

  • Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510

    Article  Google Scholar 

  • Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200

    Article  Google Scholar 

  • Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. J Geophys Res, 97: 4809–4822

    Article  Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev Geophys, 39: 291–323

    Article  Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T. 2009. Stagnant slab: A review. Annu Rev Earth Planet Sci, 37: 19–46

    Article  Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re- Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53

    Article  Google Scholar 

  • Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Sci Bull, 54: 3367–3378

    Article  Google Scholar 

  • Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9GPa and genesis of HIMU ocean island basalts. J Petrol, 51: 2067–2088

    Article  Google Scholar 

  • Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett, 212: 47–62

    Article  Google Scholar 

  • Gerya T V, Yuen D A, Sevre E O D. 2004. Dynamical causes for incipient magma chambers above slabs. Geology, 32: 89–92

    Article  Google Scholar 

  • Gerya T, Stöckhert B. 2006. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci (Geol Rundsch), 95: 250–274

    Article  Google Scholar 

  • Gerya T V, Connolly J A D, Yuen D A, Gorczyk W, Capel A M. 2006. Seismic implications of mantle wedge plumes. Phys Earth Planet Inter, 156: 59–74

    Article  Google Scholar 

  • Gerya T V, Connolly J A D, Yuen D A. 2008a. Why is terrestrial subduction one-sided? Geology, 36: 43–46

    Article  Google Scholar 

  • Gerya T V, Perchuk L L, Burg J P. 2008b. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crustmantle associations in collision belts. Lithos, 103: 236–256

    Article  Google Scholar 

  • Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31

    Article  Google Scholar 

  • Gorczyk W, Gerya T V, Connolly J A D, Yuen D A. 2007a. Growth and mixing dynamics of mantle wedge plumes. Geology, 35: 587–590

    Article  Google Scholar 

  • Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007b. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles. Geophys Res Lett, 34: L21309

    Article  Google Scholar 

  • Gorczyk W, Willner A P, Gerya T V, Connolly J A D, Burg J P. 2007c. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling. Phys Earth Planet Inter, 163: 209–232

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  • Green T H, Adam J. 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0GPa, 650–700°C. Eur J Mineral, 15: 815–830

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere–asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Griffin W L, Zhang A D, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Geodyn Ser, 27: 107–126

    Article  Google Scholar 

  • Griffin W L, Begg G C, O’Reilly S Y. 2013. Continental-root control on the genesis of magmatic ore deposits. Nat Geosci, 6: 905–910

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The Role of H2O in Subduction Zone Magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Guo F, Fan W, Wang Y, Zhang M. 2004. Origin of early Cretaceous calcalkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78: 291–305

    Article  Google Scholar 

  • Guo J, Chen F, Zhang X, Sibel W, Zhai M. 2005. Evolution of syn- to postcollisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronlogy (in Chinese with English abstract). Acta Petrol Sin, 21: 1281–1301

    Google Scholar 

  • Guo X, Encarnacion J, Xu X, Deino A, Li Z, Tian X. 2012. Collision and rotation of the South China block and their role in the formation and exhumation of ultrahigh pressure rocks in the Dabie Shan orogen. Terra Nova, 24: 339–350

    Article  Google Scholar 

  • Guo J T, Guo F, Wang C Y, Li C W. 2013. Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton: New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171: 1–16

    Article  Google Scholar 

  • Guo F, Fan W, Li C, Wang C Y, Li H, Zhao L, Li J. 2014. Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chem Geol, 381: 243–258

    Article  Google Scholar 

  • Guo P Y, Niu Y L, Ye L, Liu J, Sun P, Cui H, Zhang Y, Gao J, Su L, Zhao J, Feng Y. 2014. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr–Nd–Hf isotope compositions of Jining basalts. Lithos, 202-203: 37–54

    Article  Google Scholar 

  • Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535–538

    Article  Google Scholar 

  • Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757

    Article  Google Scholar 

  • Hart S R, Blusztajn J, Dick H J B, Meyer P S, Muehlenbachs K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta, 63: 4059–4080

    Article  Google Scholar 

  • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436

    Article  Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45

    Article  Google Scholar 

  • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314

    Article  Google Scholar 

  • Hong L B, Zhang Y H, Xu Y G, Ren Z Y, Yan W, Ma Q, Ma L, Xie W. 2017. Hydrous orthopyroxene-rich pyroxenite source of the Xinkailing high magnesium andesites, Western Liaoning: Implications for the subduction-modified lithospheric mantle and the destruction mechanism of the North China Craton. Lithos, 282-283: 10–22

    Article  Google Scholar 

  • Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150

    Article  Google Scholar 

  • Huang X L, Xu Y G, Liu D Y. 2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China. Geochim Cosmochim Acta, 68: 127–149

    Article  Google Scholar 

  • Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Google Scholar 

  • Huang H, Gao S, Hu Z C, Liu X M, Yuan H L. 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning: Implication for delamination of newly formed lower crust. Sci China Ser D-Earth Sci, 50: 1773–1786

    Article  Google Scholar 

  • Huang J, Zhao D. 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Phys Earth Planet Inter, 173: 330–348

    Article  Google Scholar 

  • Huang X L, Zhong J W, Xu Y G. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochim Cosmochim Acta, 96: 193–214

    Article  Google Scholar 

  • Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317

    Article  Google Scholar 

  • Huang J, Xiao Y. 2016. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. Int Geol Rev, 58: 1350–1362

    Article  Google Scholar 

  • Huang S C, Zheng Y F. 2017. Mantle geochemistry: Insights from ocean island basalts. Sci China Earth Sci, 60: 1976–2000

    Article  Google Scholar 

  • Ichiki M, Baba K, Obayashi M, Utada H. 2006. Water content and geotherm in the upper mantle above the stagnant slab: Interpretation of electrical conductivity and seismic P-wave velocity models. Phys Earth Planet Inter, 155: 1–15

    Article  Google Scholar 

  • Ivanov A V. 2007. Evaluation of different models for the origin of the Siberian traps. Geol Soc Am Spec Paper, 430: 669–691

    Google Scholar 

  • Iwamori H. 1992. Degree of melting and source composition of Cenozoic basalts in southwest Japan: Evidence for mantle upwelling by flux melting. J Geophys Res, 97: 10983–10995

    Article  Google Scholar 

  • Iwamori H. 2000. Deep subduction of H2O and deflection of volcanic chain towards backarc near triple junction due to lower temperature. Earth Planet Sci Lett, 181: 41–46

    Article  Google Scholar 

  • Iwamori H. 2007. Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol, 239: 182–198

    Article  Google Scholar 

  • Jiang Y H, Jiang S, Zhao K, Ni P, Ling H, Liu D. 2005. SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China. Chin Sci Bull, 50: 2612–2620

    Article  Google Scholar 

  • Jordan T H. 1975. The continental tectosphere. Rev Geophys Space Phys, 13: 1–12

    Article  Google Scholar 

  • Jordan T H. 1981. Continents as a chemical boundary layer. Phil Trans Roy Soc, A301: 359–373

    Article  Google Scholar 

  • Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. J Geophys Res, 106: 6423–6446

    Article  Google Scholar 

  • Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem, 4: 749–806

    Article  Google Scholar 

  • Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kiminami K, Imaoka T. 2013. Spatiotemporal variations of Jurassic-Cretaceous magmatism in eastern Asia (Tan-Lu Fault to SW Japan): Evidence for flat-slab subduction and slab rollback. Terra Nova, 25: 414–422

    Article  Google Scholar 

  • Kimura J I, Kent A J R, Rowe M C, Katakuse M, Nakano F, Hacker B R, van Keken P E, Kawabata H, Stern R J. 2010. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst, 11: Q10011

    Article  Google Scholar 

  • Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An Experimental Study of Carbonated Eclogite at 3.5–5.5GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. J Petrol, 53: 727–759

    Article  Google Scholar 

  • Kuang Y S, Wei X, Hong L B, Ma J L, Pang C J, Zhong Y T, Zhao J X, Xu Y G. 2012. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous–early Cenozoic. Lithos, 154: 68–82

    Article  Google Scholar 

  • Kuritani T, Ohtani E, Kimura J I. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4: 713–716

    Article  Google Scholar 

  • Kuritani T, Kimura J I, Ohtani E, Miyamoto H, Furuyama K. 2013. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 156-159: 1–12

    Article  Google Scholar 

  • Kukačka M, Matyska C. 2008. Numerical model of heat flow in back-arc regions. Earth Planet Sci Lett, 276: 243–252

    Article  Google Scholar 

  • Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res, 20: 26–35

    Article  Google Scholar 

  • Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. 2014. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208–221

    Article  Google Scholar 

  • Kusky T M, Polat A, Windley B F, Burke K C, Dewey J F, Kidd W S F, Maruyama S, Wang J P, Deng H, Wang Z S, Wang C, Fu D, Li X W, Peng H T. 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Sci Rev, 162: 387–432

    Article  Google Scholar 

  • Krystopowicz N J, Currie C A. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet Sci Lett, 361: 195–207

    Article  Google Scholar 

  • Lallemand S. 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin- Mariana subduction. Prog Earth Planet Sci, 3: 15

    Article  Google Scholar 

  • Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge: Cambridge University Press Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, 73: 3661–3697

    Google Scholar 

  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Article  Google Scholar 

  • Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397: 281–295

    Article  Google Scholar 

  • Li W, Li X, Lu F, Zhou Y, Zhang D. 2002. Geological characteristics and its setting for volcanic rocks of early Cretaceous Yixian Formation in western Liaoning province, eastern China (in Chinese with English abstract). Acta Petrol Sin, 18: 193–204

    Google Scholar 

  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182

    Article  Google Scholar 

  • Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308

    Google Scholar 

  • Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 385: 137–144

    Article  Google Scholar 

  • Li H Y, Huang X L, Guo H. 2014. Geochemistry of Cenozoic basalts from the Bohai Bay Basin: Implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton. Lithos, 196-197: 54–66

    Article  Google Scholar 

  • Li Y Q, Ma C Q, Robinson P T, Zhou Q, Liu M L. 2015. Recycling of oceanic crust from a stagnant slab in the mantle transition zone: Evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 230: 146–165

    Article  Google Scholar 

  • Li H Y, Xu Y G, Ryan J G, Huang X L, Ren Z Y, Guo H, Ning Z G. 2016a. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochim Cosmochim Acta, 178: 1–19

    Article  Google Scholar 

  • Li H Y, Zhou Z, Ryan J G, Wei G J, Xu Y G. 2016b. Boron isotopes reveal multiple metasomatic events in the mantle beneath the eastern North China Craton. Geochim Cosmochim Acta, 194: 77–90

    Article  Google Scholar 

  • Li Y Q, Ma C Q, Robinson P T. 2016. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region. Lithos, 262: 27–43

    Article  Google Scholar 

  • Li H Y, Xu Y G, Ryan J G, Whattam S A. 2017. Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations. J Geophys Res Solid Earth, 122: 224–246

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev, 4: 111–120

    Google Scholar 

  • Liu S, Zou H, Hu R, Zhao J, Feng C. 2006. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications. Geochem J, 40: 181–195

    Article  Google Scholar 

  • Liu S, Hu R, Gao S, Feng C, Qi Y, Wang T, Feng G, Coulson I M. 2008. UPb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos, 106: 365–379

    Article  Google Scholar 

  • Liu Y S, Gao S, Kelemen P B, Xu W. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 72: 2349–2376

    Article  Google Scholar 

  • Liu S, Hu R, Gao S, Feng C, Yu B, Feng G, Qi Y, Wang T, Coulson I M. 2009. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos, 113: 621–639

    Article  Google Scholar 

  • Liu S, Hu R, Gao S, Feng C, Feng G, Qi Y, Coulson I M, Yang Y, Yang C, Tang L. 2012. Geochemical and isotopic constraints on the age and origin of mafic dikes from eastern Shandong Province, eastern North China Craton. Int Geol Rev, 54: 1389–1400

    Article  Google Scholar 

  • Liu J L, Shen L, Ji M, Guan H, Zhang Z, Zhao Z. 2013. The Liaonan/ Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China Craton. Tectonics, 32: 1121–1141

    Article  Google Scholar 

  • Liu S, Currie C A. 2016. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666: 33–47

    Article  Google Scholar 

  • Liu X, Zhao D, Li S, Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet Sci Lett, 464: 166–174

    Article  Google Scholar 

  • Ma L, Jiang S Y, Hofmann A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim Cosmochim Acta, 124: 250–271

    Article  Google Scholar 

  • Ma L, Jiang S Y, Hofmann A W, Xu Y G, Dai B Z, Hou M L. 2016. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol, 432: 1–15

    Article  Google Scholar 

  • Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97–108

    Article  Google Scholar 

  • Mallik A, Dasgupta R, Tsuno K, Nelson J. 2016. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochim Cosmochim Acta, 195: 226–243

    Article  Google Scholar 

  • Martin L A J, Wood B J, Turner S, Rushmer T. 2011. Experimental measurements of trace element partitioning between lawsonite, zoisite and fluid and their implication for the composition of arc magmas. J Petrol, 52: 1049–1075

    Article  Google Scholar 

  • Maruyama S, Hasegawa A, Santosh M, Kogiso T, Omori S, Nakamura H, Kawai K, Zhao D. 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Res, 16: 414–430

    Article  Google Scholar 

  • Matsukage K N, Jing Z, Karato S I. 2005. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature, 438: 488–491

    Article  Google Scholar 

  • McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280

    Article  Google Scholar 

  • Meng F, Xue H, Li T, Yang H, Liu F. 2005. Enriched characteristics of Late Mesozoic mantle under the Sulu orogenic belt: Geochemical evidence from gabbro in Rushan (in Chinese with English abstract). Acta Petrol Sin, 21: 1583–1592

    Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Special Publ, 76: 71–81

    Article  Google Scholar 

  • Menzies M, Xu Y, Zhang H, Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1–21

    Article  Google Scholar 

  • Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific. Tectonophysics, 122: 195–216

    Article  Google Scholar 

  • Morlidge M, Pawley A, Droop G. 2006. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaOMgO- FeO-MnO-CO2. Contrib Mineral Petrol, 152: 365–373

    Article  Google Scholar 

  • Molnar P, Houseman G A, Conrad C P. 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int, 133: 568–584

    Article  Google Scholar 

  • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982

    Article  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357–1362

    Article  Google Scholar 

  • Nakanishi M, Tamaki K, Kobayashi K. 1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications. Geophys Res Lett, 19: 693–696

    Article  Google Scholar 

  • Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta, 49: 2309–2322

    Article  Google Scholar 

  • Nikolaeva K, Gerya T V, Connolly J A D. 2008. Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys Earth Planet Inter, 171: 336–356

    Article  Google Scholar 

  • Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China. Geol J China Univ, 11: 9–46

    Google Scholar 

  • Nohda S, Tatsumi Y, Otofuji Y, Matsuda T, Ishizaka K. 1988. Asthenospheric injection and back-arc opening: Isotopic evidence from Northeast Japan. Chem Geol, 68: 317–327

    Article  Google Scholar 

  • O’Connor J M, Steinberger B, Regelous M, Koppers A A P, Wijbrans J R, Haase K M, Stoffers P, Jokat W, Garbe-Schönberg D. 2013. Constraints on past plate and mantle motion from new ages for the Hawaiian- Emperor Seamount Chain. Geochem Geophys Geosyst, 14: 4564–4584

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Yurimoto H. 2000. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3- H2O at pressures up to 27GPa. Phys Chem Miner, 27: 533–544

    Article  Google Scholar 

  • Ohtani E, Litasov K D, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143-144: 255–269

    Article  Google Scholar 

  • Ohtani E, Zhao D. 2009. The role of water in the deep upper mantle and transition zone: Dehydration of stagnant slabs and its effects on the big mantle wedge. Rus Geol Geophys, 50: 1073–1078

    Article  Google Scholar 

  • Okamura S, Arculus R J, Martynov Y A. 2005. Cenozoic magmatism of the north-eastern Eurasian margin: The role of lithosphere versus asthenosphere. J Petrol, 46: 221–253

    Article  Google Scholar 

  • O’Reilly S Y, Griffin W L, Djomani Y H P, Morgan P. 2001. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 11: 4–10

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Pei F, Xu W, Wang Q, Wang D, Lin J. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: Constraints on the nature of Mesozoic lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 10: 88–97

    Google Scholar 

  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2009. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81

    Article  Google Scholar 

  • Pilet S, Baker M B, Muntener O, Stolper E M. 2011. Monte carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol, 52: 1415–1442

    Article  Google Scholar 

  • Plank T. 2014. The chemical composition of subducting sediments. Treatise Geochem, 4: 607–629

    Article  Google Scholar 

  • Platt J P, England P C. 1994. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences. Am J Sci, 294: 307–336

    Article  Google Scholar 

  • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235

    Article  Google Scholar 

  • Princivalle F, De Min A, Lenaz D, Scarbolo M, Zanetti A. 2014. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188: 3–14

    Article  Google Scholar 

  • Prodehl C, Mooney W D. 2012. Exploring the Earth’s crust—History and results of controlled-source seismology. Geol Soc Am Mem, 208: 1–764

    Google Scholar 

  • Qian Q, Hermann J. 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195–1224

    Article  Google Scholar 

  • Qiao Y C, Guo Z Q, Shi Y L. 2013. Thermal convection thinning of the North China Craton: Numerical simulation. Sci China Earth Sci, 56: 773–782

    Article  Google Scholar 

  • Ramos V A, Folguera A. 2009. Andean flat-slab subduction through time. Geol Soc Spec Publ, 327: 31–54

    Article  Google Scholar 

  • Richard G, Bercovici D, Karato S I. 2006. Slab dehydration in the Earth’s mantle transition zone. Earth Planet Sci Lett, 251: 156–167

    Article  Google Scholar 

  • Richard G C, Iwamori H. 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys Earth Planet Inter, 183: 280–287

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187–207

    Article  Google Scholar 

  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2014. Composition of the continental crust. Treatise Geochem, 4: 1–51

    Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature, 439: 192–194

    Article  Google Scholar 

  • Sakuyama T, Tian W, Kimura J I, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H, Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chem Geol, 359: 32–48

    Article  Google Scholar 

  • Sakuyama T, Nagaoka S, Miyazaki T, Chang Q, Takahashi T, Hirahara Y, Senda R, Itaya T, Kimura J I, Ozawa K. 2014. Melting of the uppermost metasomatized asthenosphere triggered by fluid fluxing from ancient subducted sediment: Constraints from the quaternary basalt lavas at Chugaryeong Volcano, Korea. J Petrol, 55: 499–528

    Article  Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05B07

    Article  Google Scholar 

  • Sato K, Katsura T. 2001. Experimental investigation on dolomite dissociation into aragonite+magnesite up to 8.5GPa. Earth Planet Sci Lett, 184: 529–534

    Article  Google Scholar 

  • Schmid C, Goes S, van der Lee S, Giardini D. 2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet Sci Lett, 204: 17–32

    Article  Google Scholar 

  • Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84

    Article  Google Scholar 

  • Scire A, Zandt G, Beck S, Long M, Wagner L, Minaya E, Tavera H. 2016. Imaging the transition from flat to normal subduction: Variations in the structure of the Nazca slab and upper mantle under southern Peru and northwestern Bolivia. Geophys J Int, 204: 457–479

    Article  Google Scholar 

  • Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Sci Rev, 113: 212–270

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk L L. 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116: 209–229

    Article  Google Scholar 

  • Shen Z, Huo Z, Yu F, Chen Z, Li Q, Ma G, Ge F, Wang Z. 2015. SHRIMP zircon U-Pb ages and Hf isotopes in the intermediate-acidic rocks of Wanganzhen complex in the northern part of Taihang Mountains and their geological implications (in Chinese with English abstract). Acta Petrol Sin, 31: 1409–1420

    Google Scholar 

  • Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green D H, Rosenthal A. 2008. Phase Relations and Melting of Anhydrous K-bearing Eclogite from 1200 to 1600 °C and 3 to 5GPa. J Petrol, 49: 771–795

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green D H, Scott D. 2010. Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol, 160: 569–589

    Article  Google Scholar 

  • Staudigel H, Plank T, White B, Schmincke H U. 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust: DSDP sites 417 and 418. Geophys Monogr, 96: 19–38

    Google Scholar 

  • Stern R J. 2004. Subduction initiation: spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochem Geophys Geosyst, 4: 8003

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Sun W D, Hu Y H, Kamenetsky V S, Eggins S M, Chen M, Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochim Cosmochim Acta, 72: 3542–3549

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Kato T. 1995. Flotation of diamond in mantle melt at high pressure. Science, 269: 216–218

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435–452

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Nakamura E, Ying J F. 2011. Multistage melt/fluidperidotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol, 161: 845–861

    Article  Google Scholar 

  • Tang Y J, Chen Y J, Zhou S, Ning J, Ding Z. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography. J Geophys Res-Solid Earth, 118: 2333–2346

    Article  Google Scholar 

  • Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267

    Article  Google Scholar 

  • Tatsumi Y, Maruyama S, Nohda S. 1990. Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection. Tectonophysics, 181: 299–306

    Article  Google Scholar 

  • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. London: Blackwell Science. 211

    Google Scholar 

  • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications. 312

    Google Scholar 

  • Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265

    Article  Google Scholar 

  • Tian Y, Zhao D P, Sun R M, Teng J W. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169–182

    Article  Google Scholar 

  • Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K. 2008. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet Sci Lett, 274: 346–354

    Article  Google Scholar 

  • Ueda K, Gerya T, Sobolev S V. 2008. Subduction initiation by thermal-chemical plumes: Numerical studies. Phys Earth Planet Inter, 171: 296–312

    Article  Google Scholar 

  • van der Lee S, Regenauer-Lieb K, Yuen D A. 2008. The role of water in connecting past and future episodes of subduction. Earth Planet Sci Lett, 273: 15–27

    Article  Google Scholar 

  • van der Meer D G, Torsvik T H, Spakman W, van Hinsbergen D J J, Amaru M L. 2012. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nat Geosci, 5: 215–219

    Article  Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett, 182: 157–169

    Article  Google Scholar 

  • van Hunen J, van den Berg A P, Vlaar N J. 2004. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: A numerical parameter study. Phys Earth Planet Inter, 146: 179–194

    Article  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Google Scholar 

  • von Huene R, Ranero C R, Vannucchi P. 2004. Generic model of subduction erosion. Geology, 32: 913–916

    Article  Google Scholar 

  • Wada I, Wang K L. 2009. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst, 10: Q10009

    Article  Google Scholar 

  • Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60

    Article  Google Scholar 

  • Wang X, Gao S, Liu X, Yuan H, Hu Z, Zhang H, Wang X. 2006. Geochemistry of high-Mg andesites from the early Cretaceous Yixian Formation, western Liaoning: Implications for lower crustal delamination and Sr/Y variations. Sci China Ser D-Earth Sci, 49: 904–914

    Article  Google Scholar 

  • Wang W, Xu W, Ji W, Yang D, Pei F. 2006. Late Mesozoic and Paleogene basalts and deep-derived xenocrysts in eastern Liaoning province, China: Constraints on the nature of lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 12: 30–40

    Google Scholar 

  • Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in eastcentral China. Lithos, 125: 940–955

    Article  Google Scholar 

  • Wang X C, Wilde S A, Li Q L, Yang Y N. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nat Commun, 6: 7700

    Article  Google Scholar 

  • Wang Z S, Kusky T M, Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophys Res Lett, 43: 11567–11577

    Article  Google Scholar 

  • Wang X J, Chen L H, Hofmann A W, Mao F G, Liu J Q, Zhong Y, Xie L W, Yang Y H. 2017. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett, 465: 16–28

    Article  Google Scholar 

  • Wei W, Xu J, Zhao D, Shi Y. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. J Asian Earth Sci, 60: 88–103

    Article  Google Scholar 

  • Wei W, Zhao D P, Xu J, Wei F, Liu G. 2015. P andS wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism. J Geophys Res Solid Earth, 120: 1642–1666

    Article  Google Scholar 

  • White W M, Klein E M. 2014. Composition of the oceanic crust. Treatise Geochem, 4: 457–496

    Article  Google Scholar 

  • Whittaker J M, Müller R D, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A. 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science, 318: 83–86

    Article  Google Scholar 

  • Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293

    Article  Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Wu F Y, Zhao G, Wilde S A, Sun D. 2005b. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 24: 523–545

    Article  Google Scholar 

  • Wu F Y, Yang J H, Wilde S A, Zhang X O. 2005c. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 221: 127–156

    Article  Google Scholar 

  • Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemicaltemporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 70: 5013–5034

    Article  Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese with English abstract). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Article  Google Scholar 

  • Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36–65

    Article  Google Scholar 

  • Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117: 229–246

    Article  Google Scholar 

  • Xu X S, O’Reilly S Y, Zhou X, Griffin W L. 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38: 41–62

    Article  Google Scholar 

  • Xu X S, O’Reilly S Y, Griffin W L, Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China: An LAM-ICPMS trace element study. J Petrol, 41: 111–148

    Article  Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth (A), 26: 747–757

    Article  Google Scholar 

  • Xu Y G, Sun M, Yan W, Liu Y, Huang X L, Chen X M. 2002. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci, 20: 937–954

    Article  Google Scholar 

  • Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004a. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci (Geol Rundsch), 93: 1025–1041

    Article  Google Scholar 

  • Xu Y G, Chung S L, Ma J, Shi L. 2004b. Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. J Geol, 112: 593–605

    Article  Google Scholar 

  • Xu Y G. 2006. Using basalt geochemistry to constrain the Mesozoic- Cenozoic evolution of the lithosphere beneath the North China Craton (in Chinese with English abstract). Earth Sci Fronti, 13: 93–104

    Google Scholar 

  • Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. 2008. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 102: 25–42

    Article  Google Scholar 

  • Xu P F, Zhao D P. 2009. Upper-mantle velocity structure beneath the North China Craton: Implications for lithospheric thinning. Geophys J Int, 177: 1279–1283

    Article  Google Scholar 

  • Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Sci Bull, 54: 3379–3396

    Article  Google Scholar 

  • Xu Z, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146-147: 202–217

    Article  Google Scholar 

  • Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184

    Article  Google Scholar 

  • Xu Z, Zheng Y F, He H Y, Zhao Z F. 2014a. Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J Volcanol Geotherm Res, 272: 99–110

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014b. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302

    Article  Google Scholar 

  • Xu Y G. 2014. Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67

    Article  Google Scholar 

  • Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268-271: 302–319

    Article  Google Scholar 

  • Yamamoto J, Nishimura K, Ishibashi H, Kagi H, Arai S, Prikhod’ko V S. 2012. Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analyses of mantle xenoliths: Direct evidence for high geothermal gradient in backarc lithosphere. Tectonophysics, 554-557: 74–82

    Article  Google Scholar 

  • Yan J, Chen J, Xie Z, Zhou T. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chin Sci Bull, 48: 2139–2144

    Article  Google Scholar 

  • Yang W, Li S. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102: 88–117

    Article  Google Scholar 

  • Yang J H, Chung S L, Zhai M G, Zhou X H. 2004. Geochemical and Sr-Nd- Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145–160

    Article  Google Scholar 

  • Yang J H, Chung S L, Wilde S A, Wu F, Chu M F, Lo C H, Fan H R. 2005a. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125

    Article  Google Scholar 

  • Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F, Lo C H, Song B. 2005b. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh- pressure orogenic belt, east China and their relationship to lithospheric thinning. Chem Geol, 222: 200–231

    Article  Google Scholar 

  • Yang J H, Sun J F, Chen F, Wilde S A, Wu F Y. 2007a. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. J Petrol, 48: 1973–1997

    Article  Google Scholar 

  • Yang J H, Wu F Y, Wilde S A, Liu X M. 2007b. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol, 242: 155–175

    Article  Google Scholar 

  • Yang J H, Sun J F, Zhang J H, Wilde S A. 2012. Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos, 153: 108–128

    Article  Google Scholar 

  • Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246–260

    Article  Google Scholar 

  • Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164–182

    Article  Google Scholar 

  • Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460

    Article  Google Scholar 

  • Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638

    Article  Google Scholar 

  • Ying J F, Zhou X H, Su B X, Tang Y J. 2011. Continental growth and secular evolution: Constraints from U-Pb ages and Hf isotope of detrital zircons in Proterozoic Jixian sedimentary section (1.8–0.8Ga), North China Craton. Precambrian Res, 189: 229–238

    Article  Google Scholar 

  • Yu J H, O’Reilly S Y, Griffin W L, Xu X, Zhang M, Zhou X. 2003. The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Volcanol Geotherm Res, 122: 165–189

    Article  Google Scholar 

  • Yu J H, O’Reilly S Y, Zhang M, Griffin W L, Xu X. 2006. Roles of melting and metasomatism in the formation of the lithospheric mantle beneath the Leizhou peninsula, south China. J Petrol, 47: 355–383

    Article  Google Scholar 

  • Yu Y, Xu X S, Griffin W L, O’Reilly S Y, Xia Q K. 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 126: 182–197

    Article  Google Scholar 

  • Zack T, Foley S F, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol, 43: 1947–1974

    Article  Google Scholar 

  • Zhang H F, Sun M. 2002. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. Int Geol Rev, 44: 370–382

    Article  Google Scholar 

  • Zhang H F, Sun M, Lu F X, Zhou X H, Zhou M F, Liu Y S, Zhang G H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 35: 315–331

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–254

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387

    Article  Google Scholar 

  • Zhang H, Liu X, Li Z, Yang F, Wang X. 2005. Early Cretaceous large-scale crustal thinning in the Fuxin-Yixian basin and adjacent area in western Liaoning (in Chinese with English abstract). Geol Rev, 51: 360–372

    Google Scholar 

  • Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293

    Article  Google Scholar 

  • Zhang J, Zhang H, Ying J, Tang Y, Niu L. 2008. Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China: A petrological record. Isl Arc, 17: 231–241

    Article  Google Scholar 

  • Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Sci Bull, 54: 3417–3437

    Article  Google Scholar 

  • Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Article  Google Scholar 

  • Zhang J, Zhao Z F, Zheng Y F, Dai M. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536

    Article  Google Scholar 

  • Zhang J, Zhang H, Kita N, Shimoda G, Morishita Y, Ying J, Tang Y. 2011. Secular evolution of the lithospheric mantle beneath the eastern North China craton: Evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in the Jiaodong region, east-central China. Int Geol Rev, 53: 182–211

    Article  Google Scholar 

  • Zhang J, Zhao Z F, Zheng Y F, Liu X, Xie L. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225–245

    Article  Google Scholar 

  • Zhang S H, Zhao Y, Davis G A, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci Rev, 131: 49–87

    Article  Google Scholar 

  • Zhang Y, Wang C, Jin Z, Zhu L. 2017. Partial melting of stagnant oceanic lithosphere in the mantle transition zone and its geophysical implications. Lithos, 292-293: 379–387

    Article  Google Scholar 

  • Zhao D P, Lei J, Tang R. 2004. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chin Sci Bull, 49: 1401–1408

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, Wu Y B, Chen F, Jahn B. 2005. Zircon UPb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83: 1–28

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, Wu Y B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272

    Article  Google Scholar 

  • Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res, 11: 120–131

    Article  Google Scholar 

  • Zhao D P, Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Res, 16: 401–413

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Sci China Ser D-Earth Sci, 52: 1295–1318

    Article  Google Scholar 

  • Zhao D P, Yu S, Ohtani E. 2011. East Asia: Seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci, 40: 689–709

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, Wu F Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–114

    Article  Google Scholar 

  • Zhao G C, Cawood P A. 2012. Precambrian geology of China. Precambr Res, 222-223: 13–54

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88

    Article  Google Scholar 

  • Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3: 3413

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2015. Two types of the crust-mantle interaction in continental subduction zones. Sci China Earth Sci, 58: 1269–1283

    Article  Google Scholar 

  • Zhao D P, Isozaki Y, Maruyama S. 2017. Seismic imaging of the Asian orogens and subduction zones. J Asian Earth Sci, 145: 349–367

    Article  Google Scholar 

  • Zhao Z F, Liu Z B, Chen Q. 2017. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. J Asian Earth Sci, 145: 260–277

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66

    Article  Google Scholar 

  • Zheng J P, Sun M, Zhou M F, Robinson P. 2005. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 69: 3401–3418

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T, Zhang M, Zhang R Y, Liou J G. 2006a. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J S, Zhang R Y. 2006b. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34: 705–708

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Article  Google Scholar 

  • Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Sci Bull, 54: 3347–3353

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng J P, Griffin W L, Ma Q, O’Reilly S Y, Xiong Q, Tang H Y, Zhao J H, Yu C M, Su Y P. 2012. Accretion and reworking beneath the North China Craton. Lithos, 149: 61–78

    Article  Google Scholar 

  • Zheng Y F, Xiao W J, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Nat Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73

    Article  Google Scholar 

  • Zhou X H, Zhu B Q, Liu R X, Chen W J. 1988. Cenozoic basaltic rocks in Eastern China. In: Macdougall J D, ed. Continental Flood Basalts. Dordrecht: Kluwer Academic Publishers. 311−330

    Book  Google Scholar 

  • Zhou X, Sun M, Zhang G, Chen S. 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111–124

    Article  Google Scholar 

  • Zhou L Q, Xie J Y, Shen W S, Zheng Y, Yang Y J, Shi H X, Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 189: 1565–1583

    Article  Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Sci Bull, 54: 3354–3366

    Article  Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  • Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60

    Article  Google Scholar 

  • Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537

    Article  Google Scholar 

  • Zou H B, Zindler A, Xu X S, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33–47

    Article  Google Scholar 

  • Zou H, Fan Q, Yao Y. 2008. U-Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem Geol, 255: 134–142

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to two anonymous reviewers for their comments that helped the improvement of the presentation. This work was supported by the National Key Basic Research Program of China (Grant No. 2015CB856100) and the National Natural Science Foundation of China (Grant No. 41690620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Xu, Z., Zhao, Z. et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 61, 353–385 (2018). https://doi.org/10.1007/s11430-017-9160-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9160-3

Keywords

Navigation